Christoph Sommer, David Eckhoff, Reinhard German and Falko Dressler, "A Computationally Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban Environments," Department of Computer Science, Technical Report, CS-2010-06, September 2010.
Abstract
We present a realistic, yet computationally inexpensive simulation model for IEEE 802.11p radio shadowing in urban environments. Based on real world measurements using IEEE 802.11p/DSRC devices, we estimated the effect that buildings and other obstacles have on the radio communication between vehicles. Especially for evaluating safety applications in the field of Vehicular Ad Hoc Networks (VANETs), stochastic models are not sufficient for evaluating the radio communication in simulation. Motivated by similar work on WiFi measurements, we therefore created an empirical model for modeling buildings and their properties to accurately simulate the signal propagation. We validated our model using real world measurements in a city scenario for different types of obstacles. Our simulation results show a very high accuracy when compared with the measurement results, while only requiring a marginal overhead in terms of computational complexity.
Quick access
Contact
Christoph Sommer
David Eckhoff
Reinhard German
Falko Dressler
BibTeX reference
@techreport{sommer2010computationally,
author = {Sommer, Christoph and Eckhoff, David and German, Reinhard and Dressler, Falko},
institution = {Department of Computer Science},
title = {{A Computationally Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban Environments}},
year = {2010},
month = {September},
number = {CS-2010-06},
type = {Technical Report},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceeedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
This page was automatically generated using BibDB and bib2web.