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Common car-following models for microscopic traffic simulation assume a time advancement using fixed-

sized time steps. However, a purely time-driven execution is inefficient when the states of some agents are

independent of other agents and thus predictable far into the simulated future. We propose a method to

accelerate microscopic traffic simulations based on identifying independence among agent state updates.

Instead of iteratively updating an agent’s state throughout a sequence of time steps, a computationally

inexpensive “fast-forward” function advances the agent’s state to the time of its earliest possible interaction

with other agents. We present an algorithm to determine independence intervals in microscopic traffic

simulations and derive fast-forward functions for several well-known traffic models. In contrast to existing

approaches based on reducing the level of detail, our approach retains the microscopic nature of the simulation.

An evaluation is performed for a synthetic scenario and on the road network of Singapore. At low traffic

densities, maximum speedup factors of about 2.6 and 1.6 are achieved, while at the highest considered densities,

only few opportunities for fast-forwarding exist. We show that the deviation from purely time-driven execution

is reduced to a minimum when choosing an adequate numerical integration scheme to execute the time-driven

updates. Verification results show that the overall deviation in vehicle travel times is marginal.
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1 INTRODUCTION
Microscopic traffic simulation models represent the traffic in a road network on the level of

individual vehicles that update their accelerations, velocities, and positions according to properties

of their environment and nearby vehicles [27]. Often, simulation proceeds in a time-driven manner

by the updating vehicles’ states at fixed time steps. When considering scenarios spanning the road

traffic of an entire city, this detailed simulation approach incurs substantial computational demands

and long runtimes. Instead of the commonly applied time-driven execution, some previous works

have considered an event-driven execution of agent-based simulations [5, 19, 34, 44]. In event-

driven simulations, the model time is advanced across those points in model time where agent state

changes occur, skipping intervals without state changes. Short intervals between state updates in

common microscopic traffic simulations are required to accurately represent close interactions

among vehicles, whereas vehicles isolated on the road behave in a predictable fashion.

Based on this observation, we propose an approach for accelerating independent agent state

updates inmicroscopic traffic simulations using a computationally inexpensive fast-forward function,
which updates the agent state to the first possible point in model time where an interaction may

occur, skipping the intermediate updates. The approach retains the microscopic nature of the

simulation. To apply the fast-forward function without violating the correctness of the simulation

results, intervals in model time are identified during which agent interactions can be ruled out. A

reduction in simulation execution time is achieved if the time spent on identifying such independence
intervals is smaller than the time saved through the reduction in time steps. In essence, the proposed

approach performs event-driven state updates for isolated vehicles, whereas time-driven updates

are maintained for all other vehicles.

We propose an algorithm that predicts independence intervals efficiently for microscopic traffic

simulations on road networks represented by graphs. Further, we derive a fast-forward function for

several well-known car-following models, which govern the acceleration behavior of the simulated

vehicles: the Intelligent Driver Model [45], Gipps’ model [17], Wiedemann’s model [48], the Optimal

Velocity Model [2], and Krauss’ model [28]. The benefits of the proposed approach are evaluated in

the city-scale microscopic traffic simulator CityMoS [52], both on a synthetic road network and on

a representation of the road network of the city of Singapore.

The present paper is an extended version of our previous conference publication [1]. Beyond

the previous results, we demonstrate the generality of the approach by deriving scanning and

fast-forward functions for several well-known car-following models, we investigate the fidelity

achievable under several numerical integration schemes for the time-driven updates, and we explore

the performance when extending the scanning mechanism towards a finer spatial granularity.

The remainder of this paper is organized as follows: Section 2 sketches the technical background

of our work. In Section 3, we describe the proposed fast-forwarding approach and derive scanning

and fast-forward functions. Section 4 provides verification and performance evaluation results.

Section 5 describes remaining limitations and potential enhancements of the approach. Section 6

discusses related work. Section 7 provides a summary of our results and concludes the paper.
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2 PRELIMINARIES
2.1 Agent-based modeling and simulation
In agent-based simulation, entities called agents are situated in an environment within the simu-

lation space. An agent’s environment is composed of static elements and nearby agents. At each

point in model time, each agent has a state defined by a set of state variables. During a state update,
an agent applies update functions to update the state variables according to the sensed environment.

A sensing range limits the distance up to which the environment is considered. We refer to a state

update that reads the state variables of nearby agents as an interaction.
Execution mechanisms for agent-based models can be classified into two categories: in a time-

driven execution, the simulation proceeds in cycles. In each cycle, each agent may carry out a

state update, which advances its state by a fixed delta in model time. In an event-driven execution,

the model time advances only to those points in model time where state changes occur [37]. The

proposed fast-forwarding approach combines time-driven and event-driven execution.

2.2 Microscopic traffic simulation
In microscopic traffic simulations, agents called driver-vehicle-units (DVUs) move through the

simulation space according to models of the state and behavior of a human driver as well as of

the vehicle operated by the driver. Typically, the simulation space is a road network modeled as

a directed graph 𝐺 = (𝑉 , 𝐸), where edges represent roads with one or more lanes and vertices

represent intersections. At each point in model time, each DVU is situated at a specific position on

a lane within an edge.

DVUs perform state updates according to a car-followingmodel (e.g., [17, 45]) and a lane-changing

model (e.g., [18, 26]). Car-following models determine the acceleration of a vehicle according to the

characteristics of the driver, the vehicle, and the surrounding traffic conditions. Commonly, the

acceleration is chosen according to a desired safety gap to the vehicle ahead. Lane-changing models

decide whether a DVU should change lanes, e.g., based on the current velocity and vehicles on

other lanes. The distance up to which nearby DVUs are considered is limited by the sensing range.

For simplicity, we refer to DVUs as agents or vehicles throughout the remainder of the paper.

3 FAST-FORWARDING APPROACH
As introduced in the previous section, in an agent-based simulation, agents update their states

according to their current environment and the states of neighboring agents within their sensing

range. When an agent is spatially isolated from others, the current state update depends only

on the environment, which may be static or highly predictable. The proposed approach is based

on the observation that if it can be guaranteed that the agent remains isolated up to a certain

point in model time, the agent’s state can be updated to this point immediately in an event-driven

fashion. By computing such updates using a fast-forward function that is less computationally

expensive than a sequence of regular state updates, the overall execution time of the simulation

can be reduced.

3.1 Problem definition
In this section, we formally describe state updates in agent-based simulations using time-driven

updates and the proposed fast-forward function. We loosely follow the formalization by Scheutz et

al. [42], who studied agent interactions in order to limit state updates to those required for reaching

the simulation’s termination criterion or to decrease communication costs in distributed simulations.

In contrast to their approach, which still relies on time-driven agent updates, fast-forwarding
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accelerates the simulation by avoiding state updates that are guaranteed to be independent of any

other agents’ states.

Let 𝜏 be the time step size of the simulation. An agent state update from model time 𝑡 to 𝑡 + 𝜏
can be represented as applying a state update function 𝑓𝜏 : 𝑆

𝑡+𝜏
𝑎 = 𝑓𝜏 (𝑆𝑡𝑎, E𝑡𝑎,N 𝑡

𝑎 ), where 𝑆𝑡𝑎 is the state

of agent 𝑎 at simulation time 𝑡 . We differentiate between the environment E𝑡𝑎 surrounding agent
𝑎 at 𝑡 , and the set of neighboring agents N 𝑡

𝑎 that are sensed by 𝑎 at 𝑡 . Let 𝑓 𝑘𝜏 denote applying the

state update function 𝑘 times:

𝑓 𝑘𝜏 (𝑆𝑡𝑎, E𝑡𝑎,N 𝑡
𝑎 ) = 𝑓𝜏 (𝑓𝜏 (. . . (𝑓𝜏 (𝑆𝑡𝑎, E𝑡𝑎,N 𝑡

𝑎 ), E𝑡+𝜏𝑎 ,N 𝑡+𝜏
𝑎 ), . . . ), E

𝑡+(𝑘−1)𝜏
𝑎 ,N 𝑡+(𝑘−1)𝜏

𝑎 )

We introduce a fast-forward function F, which approximates the result of iteratively applying 𝑓𝜏
given N 𝑡+𝑖𝜏

𝑎 = ∅, 𝑖 ∈ {0, . . . , 𝑘 − 1}: |𝐹 (𝑘𝜏, 𝑆𝑡𝑎, E𝑡𝑎) − 𝑓 𝑘𝜏 (𝑆𝑡𝑎, E𝑡𝑎, ∅)| = 𝜖, where 𝜖 is the approximation

error. If agent 𝑎 does not sense any other agent within the next 𝑘 time steps, the fast-forward

function 𝐹 successfully approximates the final state for agent 𝑎 as if iteratively applying the state

update function 𝑓𝜏 . However, since the sensing relation may not be symmetric and 𝐹 does not

yield the intermediate states in (𝑡, 𝑡 + 𝑘𝜏) required for sensing 𝑎, other agents’ state updates may

deviate when applying 𝐹 for 𝑎. Thus, avoiding deviations across all agents’ states requires mutual

independence:

∀𝑖 ∈ {0, . . . , 𝑘 − 1} :

(
(𝑁 𝑡+𝑖𝜏

𝑎 = ∅) ∧ (∀𝑎′ ∈ 𝐴 \ {𝑎} : 𝑎 ∉ 𝑁 𝑡+𝑖𝜏
𝑎′ )

)
,

where 𝐴 is the set of agents in the simulation, and ∧ denotes logical conjunction. We refer to

any interval [𝑡, 𝑡 + 𝑘𝜏) during which the above holds as an independence interval.

3.2 Overview of our approach
Algorithm 1 shows pseudo code of the main simulation loop when using fast-forwarding. The

execution scheme maintains time-driven updates for agents that interact with others, whereas

isolated agents are updated to a future point in model time in an event-driven fashion. The set 𝐴

holds all agents present in the simulation, while at any point during the execution of the simulation,

the set𝑈 holds only those agents that have not been fast-forwarded to a future point in model time.

An event queue 𝑞 holds events to be executed in timestamp order. Events are aligned to integer

multiples of the time step size 𝜏 . The event types are associated with the following behavior:

• updateAgents performs a state update for all agents in 𝑈 from the current point in model

time by one time step size 𝜏 . An execution scheme limited to this event type would coincide

with a purely time-driven simulation.

• fastForwardAgents periodically determines for each agent in𝑈 an independence interval

during which interactions with other agents cannot occur. If the interval extends beyond a

single time step into the future, the agent is updated to the end of the independence interval

by applying a model-specific fast-forward function. The agent is then removed from𝑈 and a

reinsertAgent event is scheduled at the end of the independence interval.

• reinsertAgent inserts a fast-forwarded agent into𝑈 to allow it to be considered in the next

updateAgents event.

The execution order for events at the same model time is reinsertAgent, fastForwardAgents,

updateAgents.

The fast-forwarding approach neither necessitates nor precludes parallelization of the simulation.

In our performance evaluation, we apply trivial parallelization to the identification of independence

intervals, whereas all other parts of the simulation are executed sequentially.
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Algorithm 1Main simulation loop with fast-forwarding.

1: 𝑈 ← 𝐴

2: Q.pushEvent(type: updateAgents, time: 0)
3: Q.pushEvent(type: fastForwardAgents, time: scanningPeriod)
4: while !terminate() do
5: ev← Q.popEvent()
6: if ev.type = updateAgents then
7: for each 𝑎 ∈ 𝑈 do
8: a.updateState()
9: Q.pushEvent(type: updateAgents, ev.time + 𝜏)
10: else if ev.type = fastForwardAgents then
11: identifyIndependenceIntervals(U)
12: for each 𝑎 ∈ 𝑈 do
13: if a.independenceIntervalEnd > ev.time + 𝜏 then
14: a.fastForward(a.independenceIntervalEnd)
15: 𝑈 ← 𝑈 \ {𝑎}
16: Q.pushEvent(type: reinsertAgent, time: a.independenceIntervalEnd, agent: a)
17: Q.pushEvent(type: fastForwardAgents, time: ev.time + scanningPeriod)
18: else if ev.type = reinsertAgent then
19: 𝑈 ← 𝑈 ∪ {ev.agent}

3.3 Identifying independence intervals
To allow for the identification of independence intervals, Scheutz et al. define a translation function,
which “determines for a given location the maximum distance an agent can travel within one

update” [41]. By determining the area that agents may travel to within the next 𝑘 updates, indepen-

dence intervals can be identified. In contrast to the translation function, the proposed fast-forward

function determines the full agent state after 𝑘 updates in case of independence from other agents’

states. Thus, in contrast to the iterative time steps used by Scheutz et al., the fast-forward function

allows for agent state updates across multiple time steps through a single function evaluation. We

assume that the fast-forward function is accompanied by a scanning function similar to Scheutz’

translation function, which yields the time at which an agent first arrives at a given target distance

if independence from other agents’ states is given.

In this section, we propose methods for identifying opportunities for fast-forwarding. First,

we formulate conditions under which agents can be fast-forwarded on individual graph edges.

Subsequently, we propose an algorithm to identify fast-forwarding opportunities across sequences

of edges. We assume that the simulation space, i.e., the road network, is represented by a graph

𝐺 = (𝑉 , 𝐸) comprised of a set of directed edges 𝐸 representing roads, and a set of vertices 𝑉

representing intersections. During an agent’s lifetime, the agent traverses a predefined sequence of

connected edges. Each edge traversal may require multiple state updates. Interactions with other

agents may increase the number of updates required to traverse an edge. Each edge has an assigned

weight 𝑙 representing its length, 𝑙 being at least the sensing range. For simplicity, in our description

we disregard the spatial extent of the agents themselves, which we do however consider in our

implementation of the approach.

3.3.1 Single-link and sub-link scanning. If an agent 𝑎 is driving at the speed limit of an edge and is

located sufficiently far from all other agents so it is guaranteed that 𝑎 will remain outside any other

agent’s sensing range for a certain amount of time, 𝑎 is eligible for fast-forwarding. To limit our

consideration to the agent’s current edge, we ensure that 𝑎 cannot yet sense the next edge on its

route and cannot be sensed from the previous edge. More formally, an independence interval for

agent 𝑎 covers the time interval during which all of the following conditions 𝑐1 to 𝑐4 hold:
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Fig. 1. Identifying independence intervals on a single edge. Two agents 𝑎0 and 𝑎1 are moving along edge 𝑒1

and have already reached the speed limit. Agent 𝑎1 will not interact with any other agent at least until it
senses edge 𝑒2. Agent 𝑎0 cannot be sensed from 𝑒0 and will not interact with any agent at least until it senses
the position of 𝑎1 at the time of scanning.
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Fig. 2. Identifying independence intervals across multiple edges. Left: two agents 𝑎0 and 𝑎1 passing the same
edge 𝑒2. Right: occupancy intervals for edges 𝑒0, 𝑒1, and 𝑒2. Since 𝑎0 and 𝑎1 never share their starting edges
with other agents, they can be fast-forwarded across 𝑒0 and 𝑒1, respectively. Further, since 𝑎0 and 𝑎1 never
occupy 𝑒2 at the same time, both can be fast-forwarded across 𝑒2. Thus, at minimum, the independence
intervals of both 𝑎0 and 𝑎1 extend to the time at which the successor edge to 𝑒2 is sensed.

𝑐1: 𝑣 (𝑎) = 𝑣max

𝑐3: 𝑝 (𝑎) < 𝑙 − 𝑟
𝑐2: 𝑝 (𝑎) > 𝑟

𝑐4: ∀𝑎′ ∈ 𝐴 \ {𝑎} : |𝑝 (𝑎′) − 𝑝 (𝑎) | > 𝑟

where 𝑣 (𝑎) and 𝑝 (𝑎) are agent 𝑎’s current velocity and position on the current edge, 𝐴 is the set

of agents on the same edge as 𝑎, 𝑟 is the sensing range, 𝑙 is the length of the current edge, and 𝑣max

is the speed limit. Figure 1 illustrates the identification of independence intervals on a single link.

We propose two efficient scanning methods: in single-link scanning, we replace 𝑐4 by the stricter

condition ∀𝑎′ ∈ 𝐴 \ {𝑎} : 𝑝 (𝑎′) < 𝑝 (𝑎) − 𝑟 , i.e., fast-forwarding is allowed for the most ahead

vehicle on the edge. The second variant, which we refer to as sub-link scanning, applies 𝑐4 without

modification, which may expose further fast-forwarding opportunities. In both variants, we only

consider the positions of the vehicles at the model time when the scanning is carried out. This

guarantees correctness, but may not produce independence intervals of the largest possible size.

3.3.2 Multi-link scanning. We now extend the identification of independence intervals to sequences

of graph edges, as shown in Figure 2. Algorithm 2 determines for each agent an interval during

which the agent never shares an edge with another agent. The algorithm proceeds in two stages:

In the first stage, each agent registers its occupancy intervals at the edges that may be traversed

within a configurable scanning horizon. The scanning horizon limits the scanning overheads. Each

edge stores the earliest time it is sensed by any agent (occupiedFrom), with an initial value of∞.
If a registering agent exits the edge earlier than the current value of occupiedFrom, we store the

agent as a candidate for fast-forwarding (earliestAgent), together with its sensing time and exit

time. Otherwise, the registering agent may interact with a previously registered agent; thus, we set

earliestAgent to nil.
In the second stage, each agent again iterates through the edges reachable within the scanning

horizon. Starting at an agent 𝑎’s current edge, agent 𝑎 can be fast-forwarded across the longest

sequence of edges with 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡𝐴𝑔𝑒𝑛𝑡 = 𝑎 and with exit times within the scanning horizon.
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Algorithm 2 Identifying independence intervals across multiple graph edges.

1: procedure stageOne
2: for each a ∈ 𝐴 do
3: e← a.currentEdge
4: sensingTime← currentTime
5: exitTime← currentTime + travelTime(a, e, e.length − a.position)
6: register(e, a, sensingTime, exitTime)
7: sensingTime← currentTime + travelTime(a, e, e.length − a.position − sensingRange)
8: e← a.getSuccessorEdgeOnRoute(e)
9: while e ≠ nil and exitTime ≤ currentTime + scanningHorizon do
10: nextSensingTime← exitTime + travelTime(a, e, e.length − sensingRange)
11: exitTime← exitTime + travelTime(a, e, e.length)
12: register(e, a, sensingTime, exitTime)
13: sensingTime← nextSensingTime
14: e← a.getSuccessorEdgeOnRoute(e)
15: procedure stageTwo

16: for each a ∈ 𝐴 do
17: a.independenceIntervalEnd← currentTime
18: e← a.currentEdge
19: while e ≠ nil do
20: if e.earliestAgent ≠ a then
21: break
22: e← a.getSuccessorEdgeOnRoute(e)
23: a.independenceIntervalEnd← e.occupiedFrom
24: procedure register(e, a, sensingTime, exitTime)
25: if exitTime ≥ currentTime + scanningHorizon then
26: exitTime←∞
27: if exitTime < e.occupiedFrom then
28: e.earliestAgent← a
29: e.earliestAgentExitTime← exitTime
30: else if sensingTime ≤ e.earliestAgentExitTime then
31: e.earliestAgent← nil
32: e.occupiedFrom← min(e.occupiedFrom, sensingTime)

By limiting fast-forwarding to the agent who first occupies an edge, some opportunities are not

exploited. An example is given in Figure 2: although agent 𝑎0 never occupies edge 𝑒2 at the same

time as 𝑎1, agent 𝑎0 will not be fast-forwarded across edge 𝑒2. To limit the costs of the scanning

process, we do not consider such situations.

The size of the independence intervals depends on the scanning horizon as well as the period in

model time after which single-link and multi-link scanning are repeated, which must be balanced

with the incurred scanning overhead. The simulation model and scenario define upper bounds for

the independence intervals through the agents’ velocity, the sensing range in relation to the lengths

of the edges as well as the density of the traffic. Our implementation evaluated in Section 4 applies

single-link and multi-link scanning with a configurable period length in model time. The effects of

varying the scanning parameters according to the considered simulation model and scenario are

evaluated in Section 4.2.

3.4 Scanning and Fast-Forward Functions
Fast-forwarding relies on a scanning and a fast-forward function to identify independence intervals

and the future state of an agent based on its current state and the environment.

(1) As described in Section 3.3, the identification of independence intervals relies on a scanning

function 𝑆 : R × R→ R × R, which given a position 𝑝 and the current velocity 𝑣 yields the

model time at which the considered vehicle will reach 𝑝 , and its velocity at that time.

(2) To be able to resume time-driven updates after fast-forwarding an agent, we round the time

to which the agent can be fast-forwarded to the nearest smaller time step. Given the rounded

time 𝑡 and the current velocity, the fast-forward function 𝐹 : R × R → R × R yields the

position and velocity reached at 𝑡 .
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The focus of car-following models is the acceleration behavior of a following vehicle 𝑓 depending

on the state of a leading vehicle 𝑙 . In fact, some models require the presence of a leading vehicle

to produce plausible acceleration values. For instance, the acceleration value generated by the

well-known General Motors model [6] tends towards infinity when the distance to the leading

vehicle tends towards infinity. To apply such models in microscopic traffic simulations, the free

driving behavior must be specified separately. The scanning and fast-forward functions can then

be derived for the equations governing the free driving.

3.4.1 Derivation Procedure. In the following, we derive scanning and fast-forward functions for

several well-known car-following models. Many car-following models are specified as differential

equations
𝑑𝑣f
𝑑𝑡

= 𝑔(𝑣f, 𝑣l, 𝑝f, 𝑝l), where 𝑣𝑖 and 𝑝𝑖 are the velocity and position of vehicle 𝑖 at model

time 𝑡 . The vehicle interactions in common traffic scenarios lead to systems of coupled differential

equations, which are usually solved using numerical integration with a fixed time step size.

Some models express the acceleration with respect to discrete time steps of size 𝜏 , resulting in

the form 𝑎(𝑡 + 𝜏) = 𝑔𝜏 (𝑣f, 𝑣l, 𝑝f, 𝑝l). However, even for models specified in a continuous manner, the

mobility in microscopic traffic simulations is typically simulated by numerical integration of the

acceleration function over time, and with a fixed time step size. Thus, for our purposes, the two

ways of specifying the acceleration behavior are equivalent. The derivation of the scanning and

fast-forward functions typically takes the following form:

• We obtain the free driving behavior by determining limΔ𝑝→∞
𝑑𝑣
𝑑𝑡

with Δ𝑝 = 𝑝l − 𝑝f, which
yields an equation that is independent of the leading vehicle’s state:

𝑑𝑣f
𝑑𝑡

= ℎ(𝑣f).
• After separation of variables, we have 𝑑𝑡 = 𝑑𝑣

ℎ (𝑣) , for which direct integration yields a function

𝑡 (𝑣) = 𝑡 (𝑣) + 𝐶𝑡 . We correct for the initial velocity 𝑣0 and the constant of integration by

setting 𝐶𝑡 = −𝑡 (𝑣0).
• Solving for 𝑣 , we obtain 𝑣 (𝑡), which can be interpreted as the velocity reached at time 𝑡 .

• Using the relationship 𝑝 (𝑣) =
∫

𝑣
ℎ (𝑣)𝑑𝑣 , we obtain 𝑝 (𝑣) = 𝑝 (𝑣) +𝐶𝑝 and set 𝐶𝑝 = −𝑝 (𝑣0).

• Solving for 𝑣 , we obtain 𝑣 (𝑝), which is the velocity reached at position 𝑝 .

Now, the scanning function is 𝑆 (𝑝, 𝑣0) =
(
𝑡 (𝑣 (𝑝)), 𝑣 (𝑝)

)
. The fast-forward function is 𝐹 (𝑡, 𝑣0) =(

𝑝 (𝑣 (𝑡)), 𝑣 (𝑡)
)
.

As an example, in the trivial case of a constant acceleration 𝑎0, the above procedure yields the

functions 𝑣 (𝑝) =
√

2𝑎0𝑑 , 𝑝 (𝑣) = 𝑣2/(2𝑎0), 𝑡 (𝑣) = 𝑣/𝑎0, and 𝑣 (𝑡) = 𝑎0𝑡 .

In the following, we derive fast-forward and scanning functions for several common car-following

models. The derivations were carried out using Mathematica.

3.4.2 Intelligent Driver Model. In the Intelligent Driver Model (IDM), vehicles accelerate according

to the following differential equation [45]:

𝑑𝑣

𝑑𝑡
= 𝑎0

(
1 −

( 𝑣
𝑣d

)𝛿 − (𝑠0 + 𝑣𝑇 + (𝑣Δ𝑣)/(2
√
𝑎0𝑏0)

Δ𝑝

)
2

)
Here, 𝑎0 is the maximum acceleration, 𝑣 is the current velocity, 𝑣d is the target velocity, 𝑠0 is the

minimum desired distance to the vehicle ahead, 𝑏0 is the comfortable braking deceleration, and

Δ𝑝 and Δ𝑣 are the position and velocity differences to the leading vehicle. 𝛿 is a tuning parameter

typically set to 4 [45]. We perform our computations for this value.

For Δ𝑝 →∞, the acceleration is determined solely by the free road term:

𝑑𝑣

𝑑𝑡
= 𝑎0

(
1 − ( 𝑣

𝑣d
)𝛿

)
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For 𝛿 = 4, integration after separation of variables yields the time required to accelerate from 0m/s

to 𝑣 :

𝑡 (𝑣) = 𝑣d

4𝑎0

(
log(𝑣d + 𝑣) − log(𝑣d − 𝑣) + 2 arctan( 𝑣

𝑣d
)
)

When accelerating from initial velocity 𝑣0 > 0m/s, the time elapsed when velocity 𝑣 is reached is:

𝑡 (𝑣) = 𝑡 (𝑣) − 𝑡 (𝑣0)

The distance that the vehicle has traveled when reaching velocity 𝑣 can be obtained as follows:

𝑝 (𝑣) =
∫

𝑣

𝑎(𝑣)𝑑𝑣 =
𝑣2

d

2𝑎0arctanh

(
( 𝑣
𝑣d
)2

)
Solving for v:

𝑣 (𝑝) = 𝑣d

√√√
tanh

(
2𝑎0𝑝

𝑣2

d

)
We now have the basic functions 𝑣 (𝑝), 𝑝 (𝑣), and 𝑡 (𝑣). However, we do not have a closed form for

𝑣 (𝑡), which required to formulate the fast-forward function. Since 𝑡 (𝑣) is twice differentiable, we
can postulate 𝑡 (𝑣) − 𝑡 = 0 and apply Halley’s root-finding method [16] to compute 𝑣 numerically at

cubical convergence speed.

An extension to IDM has been proposed to apply decelerations when advancing to a road with a

speed limit below the current velocity [27]:

𝑑𝑣

𝑑𝑡
= −𝑎0

(
1 − ( 𝑣d

𝑣
)𝛿

)
We derive fast-forward and scanning functions for this situation as well. For 𝛿 = 4, integration

after separation of variables yields:

𝑡 (𝑣) = − 1

2𝑎0

(
𝑣d (arctan( 𝑣d

𝑣
) − arctanh( 𝑣d

𝑣
)) + 2𝑣

)
We can obtain the distance at velocity v as follows:

𝑝 (𝑣) =
∫

𝑣

𝑎(𝑣)𝑑𝑣 =
1

2𝑎0

(
(𝑣2

d
− 𝑣2)arctanh(( 𝑣d

𝑣
)2)

)
We apply Halley’s method to obtain 𝑣 (𝑝) and 𝑣 (𝑡) and proceed as above. In the evaluation in

Section 4.1.1, we set 𝑎0 = 3.0𝑚
𝑠2
.

3.4.3 Gipps’ model. The model [17] by Gipps is another widely employ car-following model. It is

used in the microscopic traffic simulator AIMSUN [3]. Ciuffo et al. give an overview of the analysis

and applications of the model [8].

In contrast to IDM, the model is specified with respect to discrete time steps. However, as

discussed above, we can proceed as if the acceleration behavior was given as a differential equation.

Two separate equations are given for the free driving behavior and the presence of a leading vehicle.

We are interested in the former case, for which the acceleration is specified as follows:

𝑑𝑣

𝑑𝑡
= 𝑎0𝑐1 (1 − 𝑣/𝑣d)

√
𝑐2 + 𝑣/𝑣d
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By the same process as above, we obtain:

𝑡 (𝑣) =
2𝑣datanh(

√
(𝑐2𝑣d + 𝑣)/(𝑐2𝑣d + 𝑣d))
𝑎0𝑐1

√
𝑐2 + 1

𝑣 (𝑡) = 𝑣d (𝑐2𝑇 +𝑇 − 𝑐2) with 𝑇 = tanh
2 (𝑎0𝑐1𝑡

√
𝑐2 + 1

2𝑣d
)

𝑝 (𝑣) =
atanh(

√
𝑐2+𝑣/𝑣d√

1+𝑐2

) − 2𝑣2

d

√
1 + 𝑐2

√
𝑣/𝑣d + 𝑐2

𝑎0𝑐1

√
1 + 𝑐2

Since we do not have a closed form for 𝑣 (𝑝), we apply Halley’s method to solve 𝑝 (𝑣) − 𝑝 = 0. The

evaluation in Section 4.1.1 will rely on the parameters from [17]: 𝑐1 = 2.5, 𝑐2 = 0.025. The per-driver

constant 𝑎0 is sampled from 𝑁 (1.7, 0.09).

3.4.4 Wiedemann’s model. An early car-following model proposed by Wiedemann [48] is used in

the commercial simulator VISSIM. The acceleration behavior is governed by different equations

depending on the distance and velocity of the following and leading vehicle. The free driving

behavior relies on the equation:
𝑑𝑣
𝑑𝑡

= 𝑐1 (𝑐2 − 𝑐3𝑣), with parameters 𝑐1, 𝑐2, 𝑐3. In this model, the

velocity approaches 𝑣d = 𝑐2/𝑐3. We obtain:

𝑣 (𝑝) = 𝑐2

𝑐3

(
1 + 𝑅𝑒

(
𝑊 ( −𝑒

−1−(𝑐1𝑐
2

3
𝑑)/𝑐2

𝑐2

)
) )

𝑣 (𝑡) = 𝑐2 − 𝑒−𝑐1𝑐3𝑡

𝑐3

𝑡 (𝑣) = − log(𝑐2 − 𝑐3𝑣)
𝑐1𝑐3

𝑝 (𝑣) = −𝑐3𝑣 + 𝑐2 log(𝑐2 − 𝑐3𝑣)
𝑐1𝑐

2

3

Due to the logarithm in 𝑝 (𝑣), the function 𝑣 (𝑝) is expressed in terms of the Lambert𝑊 function,

which is defined implicitly and must thus be evaluated numerically [9]. For simplicity, we apply

Halley’s method to determine 𝑣 as the root of 𝑝 (𝑣) − 𝑝 .
In contrast to most other models, once 𝑣d has been reached, slight deviations from this speed are

modeled using a random acceleration −𝑏null or +𝑏null at each time step, wherein 𝑏null itself may be

a random variable.

During scanning and fast-forwarding, we assume that once the driver has reached 𝑣d, this velocity

is maintained exactly. Thus, the fidelity of a vehicle’s velocity and position after fast-forwarding

compared to time-driven state updates depends on the distribution of 𝑏null. Our approach ignores

the stochasticity in the model during fast-forwarding. By drawing from the sampling distribution

of the sum of random variables with the distribution of 𝑏null, it would be possible to instead retain

the variance introduced by 𝑏null.

The evaluation in Section 4.1.1 will rely on the parameters from [23], in which a fixed 𝑏null is

used: 𝑏null = 0.22, 𝑐1 = 0.004, 𝑐2 = 𝑐3𝑣d, 𝑐3 = 0.496.

3.4.5 Optimal Velocity Model. The Optimal Velocity Model was proposed by Bando et al. [2].

We consider the form relayed by Helbing and Tilch [22]:
𝑑𝑣
𝑑𝑡

= 𝑘1 (𝑉 (Δ𝑝) − 𝑣) with 𝑉 (Δ𝑝) =
𝑉1 + 𝑉2tanh(𝑘2Δ𝑝 − 𝑘3). For Δ𝑝 → ∞, 𝑉 (Δ𝑝) tends towards 𝑉1 + 𝑉2, and 𝑎(𝑣) tends towards
𝑘1 (𝑉1 + 𝑉2 − 𝑣). This is a special case of the free driving behavior of Wiedemann’s model with

𝑐1 = 𝑘1, 𝑐2 = 𝑉1 + 𝑉2, 𝑐3 = 1, 𝑐4 = 0. The evaluation in Section 4.1.1 will rely on the parameters

from [22]: 𝑘1 = 0.85,𝑉1 = 6.75,𝑉2 = 7.91.
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3.4.6 Krauss’ Model. Krauss investigates a class of models of the following discretized form [28]:

𝑣safe (𝑡 + 𝜏) = 𝑣f (𝑡) +
Δ𝑝 − Δ𝑝d
𝜏b + 𝜏

𝑣d (𝑡 + 𝜏) = min(𝑣max, 𝑣f (𝑡) + 𝜏𝑎(𝑣f (𝑡)), 𝑣safe (𝑡))
𝑣f (𝑡 + 𝜏) = max(0, 𝑣d (𝑡) − 𝜂)

where Δ𝑝 and Δ𝑝d are the current and desired gaps between the leader and follower, 𝜏 is the

driver reaction time, 𝜏b =
𝑣f+𝑣l

2𝑏
, the constant 𝑏 is the maximum deceleration. The function 𝑎(𝑣)

yields the acceleration at a given velocity 𝑣 . The random variable 𝜂 models the inaccuracies in the

driver’s acceleration behavior.

Since 𝑣safe tends towards infinity for Δ𝑝 →∞, the desired velocity 𝑣d tends towards min(𝑣max,

𝑣f + 𝜏𝑎(𝑣l)). Until 𝑣max has been reached and assuming 𝑣d (𝑡) − 𝜂 > 0, the expectation of the

acceleration with 𝜏 = 1 is thus 𝑎(𝑣f) −E(𝜂). As with Wiedemann’s model, the sampling distribution

of sums of random variables with the distribution of 𝜂 could be computed to retain the stochasticity

of the model instead.

If 𝑎(𝑣f) is a constant function, fast-forward and scanning functions are trivially derived as

described in Section 3.4.1. The evaluation in Section 4.1.1 will rely on parameters from [28]:

𝑣max = 36𝑚/𝑠, 𝑎(𝑣) = 0.8𝑚/𝑠2. The value of 𝜂 is sampled from𝑈 (0, 0.4𝜏).

3.5 Discussion
Most car-following models are defined by a time-continuous differential equation specifying

a vehicle’s acceleration behavior. Time-driven microscopic traffic simulations approximate the

specified behavior by calculating new acceleration values at each time step and updating the

vehicles’ velocities and positions accordingly. Smaller time step sizes increase the fidelity of the

approximation, but are associated with higher computational cost. In contrast, the fast-forward

function produces a “smooth” acceleration behavior without discretization to intermediate time

steps. As such, while the results when using fast-forwarding deviate from those of a purely time-

driven execution, the former can in fact be considered more in line with the model specification.

A further potential source of deviations is due to determining the occupancy intervals using the

scanning function. The intervals are therefore affected by deviations as well. When a vehicle does

not approach a road segment using the fast-forward function but using iterative time steps, the

predicted occupancy interval may slightly deviate from the observed interval during which the

vehicle actually occupies the road segment. Thus, it is possible that a vehicle is fast-forwarded

based on an erroneous prediction that the vehicle will be isolated on the road segment. In the next

section, we study the error introduced both by individual fast-forwarding operations and in full

simulations on two different road networks.

4 EVALUATION
In this section, we aim to answer the following questions:

• How large is the deviation in the simulation results between a purely time-driven execution and
the proposed fast-forwarding approach?
• In which scenarios and to which degree can fast-forwarding accelerate the simulation?

For the evaluation of the fidelity of individual fast-forwarding operations, we compare results

when simulating a single vehicle on a single-lane road for the car-following models analyzed in

Section 3. Since the fidelity depends strongly on the numerical integration scheme used for the

time-driven updates, we compare the results when using four common integration schemes.
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(a) Grid road network, around 10 000 vehicles. (b) Singapore road network, around 19 500 vehicles.

Fig. 3. Considered road networks with traffic, blue dots denoting vehicles.

Our evaluation using full simulation runs is performed using the city-scale microscopic traffic

simulator CityMoS [52]. The implementation of the scanning procedure follows the description

in Section 3.3, with trivial parallelization across the agents using OpenMP. Compared to the

implementation used in our previous experiments [1], we carried out minor code optimizations

and introduced sub-link scanning (cf. Section 3.3.1).

Two road networks are considered: a synthetic grid-shaped road network (cf. Figure 3a), and a

representation of the road network of Singapore (cf. Figure 3b). The grid network is comprised of

64 × 32 rectangles, each edge being 200m in length. There are two edges between two adjacent

vertices with opposite traffic directions, resulting in a total length of 1600km. In the Singapore

network, the average edge length is 93.2m. In comparison to the experiments in our previous

publication [1], the road network has been processed to merge redundant edges. In both scenarios,

origin and destination pairs are chosen uniformly at random on the road network. Route planning

is based on Dijkstra’s algorithm, using the edges’ lengths and speed limits as their weights. Agents

start their trips at points in model time chosen uniformly at random. In the grid scenario, we started

the measurements after a warm-up phase of 1800s to achieve roughly constant agent populations

of 500, 2 000, and 10 000. After the warm-up phase, each measurement continued for 1h of model

time. In the Singapore scenario, we used a warm-up phase of 1800s and subsequently measured the

performance for 1h of model time while the agent population increases to about 4 800, 12 600, and

24 700 agents, respectively. Vehicles accelerate according to the Intelligent Driver Model [45] and

perform lane changes according to the rules described in [49]. We configured a sensing range of

40m facing forward. We varied the following algorithm parameters:

• Single-link and multi-link scanning period: the identification of independence intervals

and the fast-forwarding are performed periodically. Since the scanning overhead depends

on whether individual graph edges or sequences of graph edges are considered, the period

length for each variant is varied separately.

• Scanning horizon: the overhead of scanning and the size of independence intervals both

depend on the maximum delta in model time that agents may be fast-forwarded.

We repeated the performance measurements using sub-link scanning, which is applied when

single-link scanning fails to identify a fast-forwarding opportunity. For the grid scenario, we

performed a parameter sweep to study the effect of different parameter combinations on the

simulation performance. The levels in seconds ofmodel timewere {0.5, 2, 8, 32} and {0.5, 2, 8, 32, 128}
for the single-link and multi-link scanning period, and {16, 64, 256} for the scanning horizon. In
the Singapore scenario, we applied a simple auto-tuning approach to select and vary parameter
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combinations at runtime: a sequence of preconfigured parameter combinations is set one after

the other, measuring the simulation progress per unit wall-clock time for each combination. The

simulation then proceeds with the best-performing parameter combination. The auto-tuning process

is repeated once either 1200s of model time have passed or the simulation performance has changed

by more than a factor of 2. We allow the auto-tuning to choose from the following combinations of

single-link scanning period, multi-link scanning period, and scanning horizon, each in seconds

of model time: (2, 32, 64), (2, 128, 64), (4, 32, 64), (4, 128, 64), and (2, ∞, 64). Each simulation run

was repeated at least 3 times. All performance measurements were performed on a 3.00GHz Intel

i5-7400 CPU with 16GiB of RAM running Ubuntu 16.04 and using GCC 5.4.0 for compilation.

4.1 Verification
After a fast-forwarding operation, an agent’s velocity and position may deviate from the results

of purely time-driven state updates. Since the numerical integration used in time-driven updates

only approximates the true value of the acceleration equation integrated over time, an error is

introduced. The magnitude of the error depends on the numerical integration scheme.

In the following, we first quantify the deviation of a vehicle’s position after a fast-forwarding

operation when compared to time-driven state updates based on different numerical integration

schemes. We then compare aggregated statistics over all vehicles in full simulation runs.

4.1.1 Individual fast-forwarding operations. We study the absolute deviation in a vehicle’s position

after driving for 30s on a single-lane road using fast-forwarding compared to time-driven state

updates. Since on multi-lane roads, isolated agents are free to change to their preferred lane, the

selection of the correct lane during fast-forwarding is trivial and not verified separately. The

starting velocity in m/s was drawn uniformly at random from the interval [0, 30]. Where the model

parameters allow us to set the speed limit directly, it was set to 36m/s. The time step size 𝜏 was

set to 0.1s and 0.5s. For each combination of model, integration method, and time step size, 10 000

repetitions were performed.

The deviations between fast-forwarding and time-driven updates are due to the error introduced

by the numerical integration used for the time-driven updates. Thus, given eachmodel’s acceleration

behavior specified by a function 𝑓 , we evaluate the deviations when performing the time-driven

updates using each of the four numerical integration studied by Treiber and Kanagaraj [46]:

(1) Forward Euler:

𝑎(𝑡 + 𝜏) = 𝑓 (𝑣 (𝑡)) 𝑣 (𝑡 + 𝜏) = 𝑣 (𝑡) + 𝑎(𝑡 + 𝜏)𝜏 𝑝 (𝑡 + 𝜏) = 𝑝 (𝑡) + 𝑣 (𝑡 + 𝜏)𝜏

(2) Ballistic update [25]:

𝑎(𝑡 + 𝜏) = 𝑓 (𝑣 (𝑡)) 𝑣 (𝑡 + 𝜏) = 𝑣 (𝑡) + 𝑎(𝑡 + 𝜏)𝜏 𝑝 (𝑡 + 𝜏) = 𝑝 (𝑡) + 1/2(𝑣 (𝑡) + 𝑣 (𝑡 + 𝜏))𝜏

(3) Trapezoid rule:

𝑣1 = 𝑣 (𝑡) 𝑎1 = 𝑓 (𝑣1) 𝑣 (𝑡 + 𝜏) = 𝑣 (𝑡) + 1/2(𝑎1 + 𝑎2)𝜏
𝑣2 = 𝑣 + 𝜏𝑎1 𝑎2 = 𝑓 (𝑣2) 𝑝 (𝑡 + 𝜏) = 𝑝 (𝑡) + 1/2(𝑣1 + 𝑣2)𝜏

(4) Fourth-order Runge-Kutta (RK4):

𝑣1 = 𝑣 (𝑡) 𝑎1 = 𝑓 (𝑣1) 𝑣 (𝑡 + 𝜏) = 𝑣 (𝑡) + 1/6(𝑎1 + 2𝑎2 + 2𝑎3 + 𝑎4)𝜏
𝑣2 = 𝑣 + 1/2𝑎1𝜏 𝑎2 = 𝑓 (𝑣2) 𝑝 (𝑡 + 𝜏) = 𝑝 (𝑡) + 1/6(𝑣1 + 2𝑣2 + 2𝑣3 + 𝑣4)𝜏
𝑣3 = 𝑣 + 1/2𝑎2𝜏 𝑎3 = 𝑓 (𝑣3)
𝑣4 = 𝑣 + 𝑎3𝜏 𝑎4 = 𝑓 (𝑣4)
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(a) Intelligent Driver Model.
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(b) Gipps’ model.
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(c) Wiedemann’s model.
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(d) Optimal Velocity model.
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(e) Krauss’ model.

Fig. 4. Relative deviation between fast-forwarding and time-driven updates using the forward Euler scheme
with 𝜏 = 0.5s. A vertical line shows the mean.

Per time step, the schemes rely on one, two, or four evaluations of the differential equation to

approximate the integral over time. As discussed in Section 3, Wiedemann and Krauss introduce

stochasticity into their models by prescribing discrete-time updates based on the forward Euler

scheme and drawing random numbers at each update. Since adaptations to these models would be

needed to support update schemes that require multiple evaluations per time step, we evaluate

these two models only for the forward Euler and ballistic update schemes.

Treiber and Kanagaraj previously evaluated the fidelity achieved by the above set of integration

schemes [46]. Since the movement of interacting vehicles is analytically tractable only for trivial

scenarios, they compare the results of numerical integration with 𝜏 between 0.002s and 2.4s to

those achieved by a reference simulation using 𝜏 = 10
−4
s. In contrast, since fast-forwarding applies

to isolated vehicles only, the reference result can be determined directly from the continuous

formulation of the acceleration behavior.

The total distance driven after 30s differs among the models depending on the respective acceler-

ation behavior, with averages of about 700m for IDM and Krauss’ model, 855m for Gipps’ model,

430m for OVM, and 920m for Wiedemann’s model.

Figure 4 shows the verification results for the forward Euler scheme with a time step size 𝜏 of 0.5s.

The mean relative error is around 1% for all car-following models. Due to the stochastic elements

of Krauss’ model, the relative error is heavy-tailed. Figure 5 shows the results for ballistic update.

As before, 𝜏 is set to 0.5s. Although the integration scheme also relies on only one evaluation of the

acceleration function per time step, the relative error is strongly reduced for most of the models.

Due to the strong stochastic influence in Krauss’ model under the chosen parameters, the relative

error for Krauss’ model is roughly the same with ballistic update as with the forward Euler scheme.

Table 1 shows verification results for the different numerical integration schemes aggregated

across the car-following models. Since the Krauss’ and Wiedemann’s models assume one function

evaluation per time step, the results for the trapezoid rule and RK4 exclude these two models. The

results show that both the mean and maximum relative deviation depend strongly on the integration

scheme. With the forward Euler scheme, the largest observed absolute deviations with 𝜏 = 0.1s

after 30s of driving was 14.4m for Krauss’ model. Excluding the stochastic models, the largest

deviation with the forward Euler scheme was 1.99m for Gipps’ model. With RK4, the maximum

absolute error is reduced immensely to only 1.35 × 10
−6
m = 1.35𝜇m for Gipps’ model.
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(c) Wiedemann’s model.
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(d) Optimal Velocity model.
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(e) Krauss’ model.

Fig. 5. Relative deviation between fast-forwarding and time-driven updates using the ballistic update scheme
with 𝜏 = 0.5s. A vertical line shows the mean.

Table 1. Relative deviation [%] between fast-forwarding and time-driven updates after 30s, aggregated across
all considered car-following models, excluding Krauss’ und Wiedemann’s models for trapezoid rule and RK4.

Euler Ballistic Trapezoid RK4
𝝉 Mean Max. Mean Max. Mean Max. Mean Max.
0.1 0.23 4.06 0.14 4.73 8.56 × 10

−5
3.46 × 10

−3
9.31 × 10

−8
2.79 × 10

−7

0.5 0.91 8.21 0.44 8.67 2.03 × 10
−3

7.73 × 10
−2

1.37 × 10
−6

1.48 × 10
−4

Table 2. Average trip durations [s] in time-driven and fast-forwarding runs.

Grid Singapore
Peak agent count 500 2 000 10 000 4 800 12 600 24 700

Time-driven 371.3 370.5 377.4 783.2 874.0 1003.0

Fast-forwarding 371.3 370.5 375.7 786.2 876.8 1006.1

These results show that the fast-forward functions accurately represent the acceleration behavior

specified in the car-following models. The remaining deviation is due to the inaccuracy introduced

by the integration scheme used in the time-driven updates. Still, we consider the outcomes of

time-driven simulations our reference results. Since the ballistic update scheme enables higher

fidelity than forward Euler, while still relying on only one function evaluation per time step, our

experiments on entire road networks rely on the ballistic update scheme.

4.1.2 Grid and Singapore scenarios. For the grid and Singapore scenarios, we conduct the veri-

fication with respect to the trip duration, which is a commonly studied metric in transportation

engineering. Table 2 compares the average trip duration. Sub-link scanning was enabled during

these experiments. For the grid scenario, we performed a parameter sweep across the scanning

parameters. The verification results are given for the parameter combinations resulting in the

lowest execution times. For the Singapore scenario, the parameters were configured at runtime

using auto-tuning. The time step size was 0.1s. We observe that in both scenarios, the deviation in

the average trip durations between the time-driven execution and fast-forwarding is less than 1%.
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(a) Peak agent count: 500.
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(b) Peak agent count: 2 000.
Avg.: 0.03%. 99%-quantile: 0.65%.
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(c) Peak agent count: 10 000.
Avg.: 0.56%. 99%-quantile: 3.49%.

Fig. 6. Relative deviation between fast-forwarding and time-driven updates in the grid scenario.
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(a) Peak agent count: 4 800.
Avg.: 0.53%. 99%-quantile: 3.55%.
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(b) Peak agent count: 12 600.
Avg.: 0.60%. 99%-quantile: 3.84%.
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(c) Peak agent count: 24 700.
Avg.: 1.01%. 99%-quantile: 8.23%.

Fig. 7. Relative deviation between fast-forwarding and time-driven updates in the Singapore scenario.

Figures 6 and 7 show histograms of the relative deviation introduced by fast-forwarding on a

per-vehicle basis. We observe that the relative deviation increases with larger amounts of traffic.

With larger traffic densities, it becomes more likely that a small difference in the progress of a

vehicle is amplified through subsequent interactions with another vehicle. For instance, a slight

delay in a vehicle’s advancement to a new road may allow another vehicle to enter the road first,

causing a braking maneuver and a substantial increase in the overall trip duration compared to the

time-driven simulation. Among the considered scenarios, the maximum average deviation is about

1%. We also report the 99%-quantile, which is less than 10% in all scenarios.

4.2 Performance measurements
4.2.1 Fast-forward function. To understand the potential for performance gains using the proposed

approach, we first compare the computational cost of iterative time-driven agent updates and

updates using the fast-forward function for the Intelligent Driver Model. We simulate a single

vehicle on a road segment of 10km length. Initially, the velocity is 0km/h. The vehicle accelerates

to the speed limit of 100km/h. In Figure 8, we compare the wall-clock time required to execute a

certain number of time steps to the time required to advance a vehicle by the same distance using

fast-forwarding. Each measurement was repeated 10
7
times in the time-driven case, and 100 000

times for fast-forwarding. The figure shows averages over the repetitions.

Figure 8a shows for the Intelligent Driver Model that, as expected, the execution time of the fast-

forward function is roughly constant, whereas the execution time of time-driven updates depends

approximately linearly on the number of steps. Although the fast-forward function is associatedwith

higher computational cost than an individual time-driven state update, fast-forwarding outperforms

time-driven updates beyond 3 consecutive steps. Thus, assuming no additional overheads, fast-

forwarding is beneficial when the average number of skipped time steps is larger than 3.
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(b) Speedup over purely time-driven execution.

Fig. 8. Execution time required for simulating a certain number of steps of 0.1s using time-driven execution
compared to fast-forwarding on a single road segment.

Reducing the time step size of the simulation allows for a larger number of skipped time steps

per fast-forwarding operation. However, due to the overall increase in time steps, the proportion of

skipped time steps across the simulation run will remain roughly the same.

Figure 8b shows the speedup of fast-forwarding by a given number of time steps over a time-

driven execution for all of the considered car-following models. As expected, we observe near-linear

speedup for all models. Some variation in the speedup is introduced by the numerical steps during

fast-forwarding: as discussed in Section 3.4, we rely on Halley’s method to iteratively solve for

the vehicle’s final velocity when a closed form is not available. The number of iterations required

is dependent on the initial estimate and the shape of the acceleration function of the considered

model. Given the speed limit 𝑣max, we used an initial estimate of 0.8𝑣max. In the experiments on

entire road networks, we used the current velocity as the initial estimate.

The break-even point between fast-forwarding and time-driven updates for Gipps’ and Wiede-

mann’s model as well as OVM lies between 16 and 32 steps, corresponding to 1.6s to 3.2s of model

time. As described in Section 3.4, fast-forwarding of Krauss’ model is possible using closed forms

alone. Accordingly, the speedup is the largest for this model. In fact, for Krauss’ model, the execution

times of a single time-driven update and a fast-forwarding operation are roughly identical.

Note that the small-scale benchmark simulation using a single road on a single lane presented in

this section may offer more opportunities for compiler optimizations than simulations on entire

road networks, although the values of parameters such as the speed limit and the number of time

steps were configured at runtime and could thus not be leveraged for optimizations. We repeated

the measurements with the lowest optimization level (-O0) supported by the C++ compiler from

the GNU compiler collection, observing the same trends as described above. In the next sections,

we evaluate the performance gains in simulations of entire road networks.

4.2.2 Grid scenarios. Figures 9 to 11 show the overall speedup achieved using the fast-forwarding

approach with sub-link scanning enabled compared with a time-driven execution for the grid

scenario for 500, 2 000, and 10 000 agents, respectively. In addition, we plot the relative reduction in

state updates, which indicates the ideal speedup through fast-forwarding when disregarding the

overhead for identifying independence intervals and the evaluation of the fast-forward function.

For instance, if the number of time steps is reduced by 50%, the ideal speedup is 2. We show three

plots for each number of agents, each varying one of the parameters single-link scanning period,

multi-link scanning period, and scanning horizon, while keeping the other two parameters fixed at

the values that achieved the largest speedup.

We can observe in Figure 9 that due to substantial opportunities for fast-forwarding with only

500 agents, frequent single-link, sub-link, and multi-link scanning as well as a large scanning
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Fig. 9. Ideal and measured speedup with 500 agents in the grid scenario.

horizon are beneficial. The best performance was achieved with single-link and multi-link scanning

periods of 2s and 8s, and a scanning horizon of 64s.

Figure 10 demonstrates the trade-off between the scanning overhead and the performance gains

through fast-forwarding: while a small multi-link scanning period reveals substantial opportunities

for fast-forwarding, the overall speedup increases with larger multi-link scanning periods.

In Figure 11, we can see that in the most congested scenario with 10 000 agents, only few

opportunities for fast-forwarding exist. In this scenario, performance gains are mostly achieved

through single-link scanning, so that a large multi-link scanning period can be chosen.

Overall, the measurements show that the opportunities for fast-forwarding decrease when

increasing the traffic density. Further, we can conclude that to limit the overhead for identifying

independence intervals, it is important to choose appropriate values for the scanning parameters.

Table 3 shows the effects of fast-forwarding in detail, comparing the results of using only

single-link and multi-link scanning to results with sub-link scanning enabled. The measured “fast-

forwarding overhead” includes both the scanning and the fast-forwarding operations. As expected,

we observe that the percentage of skipped time steps decreases with increasing traffic density.

While the absolute execution time spent on scanning and fast-forwarding increases, the overhead

relative to the overall execution time decreases. Sub-link scanning enables a minor increase in

the percentage of skipped time steps. However, due to the fine-grained scanning, the individual

skipping operations cover a smaller number of time steps each. In Figure 8, we have seen that

the performance gain is higher when skipping larger number of time steps. Overall, in the grid

scenario, sub-link scanning does not achieve a significant increase in speedup.

4.2.3 Singapore scenario. The performance results for the Singapore road network using parameter

auto-tuning for the selection of the scanning parameters are shown in Table 4. The results follow a

similar trend as those for the grid road network. Speedup factors of 1.57, 1.14, and 1.05 are achieved

with sub-link scanning for peak traffic amounts of 4 800, 12 600, and 24 700 agents, respectively. The

results show that even when discounting the fast-forwarding overhead, the percentage of skipped

time steps cannot be translated to speedup directly: since a time-driven update of an isolated

agent does not need to consider any neighboring agents, it is less computationally intensive than
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Fig. 10. Ideal and measured speedup with 2 000 agents in the grid scenario.
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Fig. 11. Ideal and measured speedup with 10 000 agents in the grid scenario.

Table 3. Performance in the grid scenarios with the best-performing scanning parameter combinations.

Peak agent count 500 2 000 10 000
Sub-link scanning off on off on off on
Execution time [s] 3.5 3.6 24.0 24.0 408.4 404.3

Fast-forwarding overhead [%] 12.1 12.2 10.8 11.3 3.4 3.7

Steps skipped [%] 76.4 76.6 58.0 58.8 25.8 28.0

Steps skipped per fast-forwarding 187.5 184.5 90.3 82.9 52.0 39.1

Speedup over time-driven 2.56 2.55 1.98 1.98 1.22 1.24
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the update of an agent on a densely populated road. Thus, avoiding updates for isolated agents

contributes less to the speedup than suggested purely by the percentage of skipped steps.

Table 4. Performance in the Singapore scenario with scanning parameters configured using auto-tuning.

Peak agent count 4 800 12 600 24 700
Sub-link scanning off on off on off on
Execution time [s] 110.6 108.7 659.0 651.3 1650.0 1643.1

Fast-forwarding overhead [%] 3.3 3.7 1.3 1.5 0.8 1.0

Steps skipped [%] 36.7 38.14 22.1 23.1 14.1 14.8

Steps skipped per fast-forwarding 115.5 100.4 101.1 86.8 94.8 81.5

Speedup over time-driven 1.54 1.57 1.12 1.14 1.05 1.05

5 DISCUSSION
In this section, we discuss limitations and potential enhancements of the proposed approach.

5.1 Applicability to more complex models and other domains
In the present paper, we assume that the routes of the agents, i.e., the sequences of edges, will not

change after the scanning has been performed. Depending on the considered simulation model,

agents may change their routes due to interactions with other agents or even spontaneously. For

instance, an agent may re-route when it detects a traffic jam. To support such models, we could

either terminate the scanning process at the first point in time when a change is possible, or

determine occupancy intervals for all possible branches. Both approaches may substantially reduce

the opportunities for fast-forwarding. If routing decisions are made stochastically, pre-sampling

from the pseudo-random number stream may still enable prediction of the agents’ routes. In the

extreme case of entirely unpredictable routes, fast-forwarding would be limited to disjoint areas

reachable by agents according to their maximum velocity.

From the problem analysis in Section 3.1, we can infer that the applicability of our approach

to other types of time-driven agent-based simulations depends on the specific models used. The

approach is applicable to models that allow for the prediction of future agent states and to scenarios

where independent agent updates occur. For instance, in crowd simulations using predefined routes

on a two-dimensional simulation space, the path taken by isolated agents may be fully predictable.

With complex models, it must be considered that the performance benefit of the approach depends

on the computational cost of the fast-forward function relative to time-driven updates as well as

on the costs for determining independence intervals.

5.2 Deviations compared to time-driven execution
As discussed in Section 3 and evaluated in Section 4.1, state updates performed using the fast-

forward function deviate slightly from those performed using iterative time steps. Although the

deviations are low and the fast-forward function can be argued to be closer to the behavior specified

by the respective car-following model, two undesirable properties emerge: first, as with any state

change in an agent-based simulation, deviations may affect other agents and may thus propagate

through the road network. Second, the deviations depend on the parametrization of the fast-

forwarding approach, i.e., on the frequency of scanning and on the scanning horizon. Thus, the

approach interlinks the execution of the simulation and the observed behavior of the simulation.

Ideally, to allow modelers to clearly identify cause-and-effect relationships when modifying the
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model or scenario, these two aspects should be decoupled. A possible solution is to carry out

the model development and simulator debugging using a purely time-driven execution, whereas

performance-critical and large-scale runs are accelerated using fast-forwarding.

5.3 Influence on statistics collection and visualization
Typically, in an agent-based simulation, statistics are gathered by periodically aggregating the

states of the agents in the simulation, e.g., the velocities of the vehicles on a road network. Usually,

the period of aggregation is a multiple of the time step size. If some updates are performed in

event-driven fashion according to the proposed approach, agents may be fast-forwarded beyond

the point when statistics are to be collected. A simple solution is to limit the scanning horizon

to the next statistics gathering time. A similar problem emerges in the context of optimistically

synchronized distributed simulations [43].

Visualization tools could apply interpolation to approximate agent states at time steps that have

been skipped through fast-forwarding.

5.4 Further opportunities for fast-forwarding
One of the main limitations of the approach is the difficulty of identifying fast-forwarding oppor-

tunities in congested scenarios, which may limit the benefits of the approach in common traffic

engineering scenarios with dense traffic. In road traffic simulations that consider traffic lights,

trivial opportunities for fast-forwarding may be given for vehicles stopped at a traffic light. Such

vehicles can simply be fast-forwarded to the next state change of the traffic lights. It may also be

possible to extend fast-forwarding to clusters of two or more agents. While the prediction of lane

changes for isolated agents is trivial, fast-forwarding of agent clusters will require the prediction

of lane changes as a result of vehicle interactions. Further, the computational cost of solving the

resulting coupled differential equations may limit the additional performance gains.

5.5 Controlling overhead
A number of ways present themselves to control the scanning overhead: first, the scanning is

parametrized with the scanning periods and scanning horizon. We showed that the optimal pa-

rameter values depend strongly on the scenario. Thus, we applied a simple auto-tuning scheme to

adapt the scanning parameters according to the traffic conditions of the Singapore scenario.

Second, in addition to the variation of congestion across model time, congestion also typically

shows variations across the simulated space. For instance, during peak hours a highly congested

speedwaywill provide few opportunities for fast-forwarding, in contrast to sparsely populated roads

in residential areas. In such situations, unnecessary computations could be avoided by restricting

the scanning to areas outside congested areas. However, further considerations are then required

to maintain correctness: since vehicles may enter or exit congested areas within the considered

scanning horizon, excluding agent interactions would require a safety margin around these areas,

which could be defined based on static information such as speed limits.

Finally, the scanning operation could be offloaded to a separate processor and carried out

concurrently with the simulation. Within the accuracy allowed by the time step size, previously

identified occupancy intervals may be outpaced by the simulation’s progress, but not invalidated.

Thus, after scanning, fast-forwarding could be applied to all agents that have not yet progressed

beyond the target time. Further, during scanning, the scanning function is evaluated a number of

times for each relevant vehicles independently, providing ample opportunities for parallelization,

e.g., on graphics processing units.
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6 RELATEDWORK
In this section, we first briefly discuss how hybrid modeling approaches relate to fast-forwarding.

We subsequently give an overview of previous work focusing on identifying and exploiting indepen-

dence between state updates for parallelization of discrete-event simulations and for accelerating

sequential and parallel time-driven agent-based simulations.

6.1 Hybrid traffic simulation
In hybrid traffic simulation [4, 51], microscopic models are combined with mesoscopic or macro-

scopic models to balance simulation fidelity and performance. Spatial or temporal segments of the

simulation are selected in which a reduction in detail and accuracy is acceptable. In these segments,

vehicles are considered in aggregate, e.g., as sets of tasks in a queuing network or in terms of fluid

dynamics. As a consequence, it is not always possible to study an individual vehicle across its entire

route. In contrast, fast-forwarding does not consider agents in aggregate. Hence, each vehicle’s

trajectory can still be studied individually. Further, fast-forwarding is applied only if it is ensured

that within the accuracy allowed by the time step size, the simulation results are unaffected.

6.2 Exploiting independent state updates
Our proposed approach trivially parallelizes the scanning for independence intervals, whereas all

other steps of the simulation are executed sequentially. However, periods in model time where

interactions among certain segments of the simulation can be ruled out are commonly exploited in

the field of parallel and distributed simulation [15]. To reduce the cost of synchronization between

processing elements, methods have been proposed to exploit lookahead, i.e., the difference in model

time between an event’s creation and execution time [14]. If a lower bound on the lookahead can

be determined [30, 36], intervals in model time can be identified during which processing elements

can compute independently. Some previous works consider the minimum model time required for a

sequence of events to propagate to a remote processing element [7, 11, 31, 32, 35, 40, 47]. Similarly

to our approach, intervals of independence are derived according to the topology of the modeled

system. However, instead of exploiting the identified independence for parallel execution, in our

work, we accelerate sequential simulations by performing independent agent state updates using a

computationally inexpensive fast-forward function. As the lookahead-based approaches in parallel

and distributed simulation, the fast-forwarding approach relies on a degree of predictability of the

entities’ behavior, which is model-dependent.

In optimistically synchronized parallel and distributed simulations [13, 19, 39, 44], some computa-

tions are performed speculatively and rolled back when a violation of the simulation correctness is

detected. In our approach, the identification of occupancy intervals can be seen as speculative state

updates under the assumption of independence among agents. When independence between the

agent updates cannot be guaranteed, the results are discarded. Lees et al. studied the effects of access

patterns to shared state variables on the performance of optimistic simulation algorithms [29].

Some previous works consider accelerating time-driven agent-based simulations by identifying

independent state updates among agents: Scheutz et al. [21, 41, 42] apply a translation function that

reflects the furthest possible amount of movement of an agent to determine an event horizon in model

time. By identifying non-overlapping areas among multiple agents’ event horizons, time intervals

of mutually independent updates can be identified. Now, in the context of sequential agent-based

simulations, agent updates can be prioritized to achieve the simulation’s termination criterion with

the minimum number of state updates. For instance, if the focus of the simulation study is on one

particular agent, only the state updates directly or indirectly affecting this agent must be performed.

In distributed agent-based simulations, idle times due to data dependencies can be reduced by

ACM Trans. Model. Comput. Simul., Vol. X, No. Y, Article Z. Publication date: March 2018.



Z:23

prioritizing agent updates according to the data dependencies across processing elements. In

contrast to our work, runtime reductions are achieved through changes in the ordering of agent

updates, not through accelerating the state updates themselves. Since road traffic simulations are

typically executed until all agents have reached a certain point in model time, the approach by

Scheutz et al. would not accelerate such simulations.

Buss et al. [5] propose an event-driven modeling approach for scenarios involving movement and

sensing. Instead of explicitly updating an entity’s location over a sequence of time steps, events are

scheduled at points in model timewhere changes inmovement occur. However, determining suitable

event scheduling times for sets of interacting vehicles may incur substantial overhead. Thus, in

contrast to the purely event-driven approach proposed by Buss et al., our proposed fast-forwarding

approach maintains a time-driven execution for all agents currently involved in an interaction.

Further, while the work by Buss et al. and another work with a similar focus by Meyer [34] share

with ours the general idea of avoiding explicit intermediate state changes, the main challenge lies

in determining the points in model time when interactions between entities may occur and in

determining the new agent state. In the present paper, we address these challenges in the context

of microscopic road traffic simulations.

Davidson and Wainer propose a language to formulate cell-based models of road traffic based on

the Cell-DEVS formalism allowing for a event-driven execution [10]. In each cell representing a

road segment, a user-defined delay function can be applied to model the time required to traverse

the segment. Another event-driven traffic model formulation targeting optimistic parallel execution

has been proposed by Yoginath and Perumalla [50]. The time to traverse an empty road segment is

determined based on the assumption of a fixed acceleration. If there is a vehicle ahead, the event

indicating the departure from the road segment is delayed based on the time of departure of the

vehicle ahead. In contrast to these existing works, our goal is to support existing and commonly

used models for car-following behavior from the traffic simulation domain. Thus, simulation studies

can benefit from the performance gains of fast-forwarding while relying on well-accepted models

that have undergone extensive analysis and calibration efforts in the literature.

Less closely related to our approach is the concept of simulation cloning [24]. In this approach,

the total execution time of a set of simulation runs is reduced by computing only the divergent

state updates across multiple runs. For instance, if single agent’s state is modified across runs, state

changes of other agents that are unaffected by this agent are not recomputed [38]. Similarly, in

updatable and exact-differential simulation [12, 20], intermediate events of an initial full simulation

run are stored. Subsequent simulation runs branch off from this initial run, reusing stored events

unaffected by the branching. As in these approaches, fast-forwarding exploits independence between

state updates to accelerate simulations. However, instead of avoiding recomputation, the fast-

forwarding approach proposed in the present paper avoids computation of some updates entirely.

Finally, the term “fast-forwarding” was used in other contexts where existing information is

exploited to advance a simulated entity in model time. In updatable simulations [12], some repeated

event executions can be avoided, thus “fast-forwarding” the corresponding simulated entity. Mauve

et al. [33] use the term “fast forward” to describe the re-execution of events after a rollback in the

context of optimistic synchronization for distributed virtual environments.

7 CONCLUSIONS AND OUTLOOK
We propose an approach to accelerate microscopic traffic simulation by identifying intervals of

independent state updates and performing such independent updates using a computationally

inexpensive fast-forward function. The approachmaintains themicroscopic nature of the simulation.

We derived fast-forward functions for several well-known models of car-following behavior and

evaluated the approach for a synthetic scenario and the road network of the city of Singapore.
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Our verification results show that the deviation from a purely time-driven execution is marginal.

The performance benefit of the approach depends strongly on the level of agent density in the

scenarios: for scenarios with sparse traffic, speedup factors of 2 and more were achieved, whereas

with dense traffic, the reduced amount of opportunities for fast-forwarding allowed for only

limited performance gains. We explored an additional fine-grained scanning scheme, which slightly

increases the fast-forwarding opportunities in dense traffic. A possible direction for future work lies

in exploring the joint fast-forwarding of clusters of vehicles. Further, the fast-forwarding approach

could be extended to models with more complex agent movement behaviors such as crowd models.
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