
su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

Cite as:
David Eckhoff, Tobias Limmer and Falko Dressler, “Attacking the Hash Table based Data Structures of Flow
Monitors,” University of Erlangen, Dept. of Computer Science 7, Technical Report 01/09, March 2009.

Technical Report 01/09

Attacking the Hash Table based Data Structures
of Flow Monitors

David Eckhoff, Tobias Limmer and Falko Dressler

University of Erlangen ∙ Dept. of Computer Science 7
Martensstr. 3 ∙ 91058 Erlangen ∙ Germany
www7.informatik.uni-erlangen.de

Lehrstuhl für Informatik 7
Rechnernetze und Kommunikationssysteme

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

http://www.ccs-labs.org/bib/inc/eckhoff2009hash-details.shtml

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

Attacking the Hash Table based Data Structures of
Flow Monitors

David Eckhoff, Tobias Limmer and Falko Dressler
Computer Networks and Communication Systems

Dept. of Computer Science, University of Erlangen, Germany

Abstract—Aggregation modules within flow-based
network monitoring tools make use of fast lookup
methods to be able to quickly assign received packets
to their corresponding flows. In software-based aggrega-
tors, hash tables are usually used for this task, as these
offer constant lookup times under optimal conditions.
The hash functions used for mapping flow keys to
hash values need to be chosen carefully to ensure
optimal utilization of the hash table. If attackers are
able to create collisions, the hash table degenerates
to linked lists with worst-case lookup times of O(n)
and greatly reduce the performance of the aggregation
modules. In this report, we analyze the aggregation
modules of software-based flow meters Vermont and
nProbe. We evaluate the resilience strength of used hash
functions by theoretical analysis and confirm the results
by performing real attacks.

Index Terms—targeted attacks, flow monitoring, de-
nial of service, hash collision

I. INTRODUCTION

A crucial function for a high-speed flow-based net-
work monitors is to use efficient data structures for
packet processing [1], [2]. Therefore, flow monitoring
tools like Vermont [3] and nProbe [4] use hash tables
for internal flow processing. A flow record is the
aggregated representation of all packets that share
common properties. These attributes are typically the
source and destination IP addresses, the source and
destination ports, and the used protocol. In the IP Flow
Information Export (IPFIX) standard [5], [6], which
supersedes the Netflow.v9 architecture [7], these at-
tributes are referred to as flow keys.

The advantage of using hash tables is the constant
lookup time O(1), i.e. for each received packet, it takes
constant time to determine whether the packet belongs
to an already existing flow, or if a new flow needs to be
created. Hash tables usually have a constant size hsize
and consist of so-called hash buckets. A hash function
k = h(x) maps values to discrete integer values in the
range k ∈ [0, hsize). However, due to the limited size

of such a hash table, it is inevitable that two different
flows are mapped to the same hash bucket sooner or
later. One possible way to handle such a collision is
that each bucket of the hash table is able to store
multiple flows in form of a linked list. Thus, this list
maintains all the concurrent flows that match the same
hash key. The disadvantage of this method is that it
takes an additional linear lookup time O(n) to find
an entry in this unsorted list. Therefore, it is essential
to keep the length of these lists as small as possible.
Otherwise, the system might become overloaded and
it will not be able to process all the received packets.
Dropped packets imply dropped information and, thus,
attacks or anomalies may remain undetected [8].

If the hash function used for calculating the hash
keys offers a uniform distribution, the length of all
bucket lists would be almost equal. Thus, a reasonably
sized hash data structure should perform well, i.e. flow
lookup is fast because of minimal list lengths.

A typical Distributed Denial of Service (DDoS) at-
tack sends huge amounts of data packets, e.g. TCP
packets with the SYN flag set, to a victim host or
subnet in order to deplete resources at the receiving
end. Assuming that the source address is used as a
flow key, the use of randomized spoofed source IP
addresses would cause a network monitor observing
those packets to create a new flow for each attack
packet. If the spoofed address is completely random
and if no countermeasures are taken, such an attack
will uniformly fill the bucket lists in the hash table
until the lists become too long to be efficiently scanned
and the flow monitor will begin to drop packets. The
bigger the hash table is, the more packets are needed
to create such long collision lists and it is more likely
that the hash table does not represent a bottleneck.

However, if the attacker is able to systematically
create packets that lead to collisions in the monitor’s
hash table, it would require much less effort, i.e. less
packets, to bring the monitor into such an overloaded

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

state. The attacker will try to create new flow records
that would be inserted in very few, or even a single
bucket inside the hash table. Then the monitor will
spend most of the time scanning these extraordinarily
long bucket lists, and so its performance will decrease
and a considerable amount of packets will be dropped.

A hash function should therefore have the following
characteristics:
• The computed hash keys should be uniformly

distributed
• It should be impossible for an attacker to create

directed collisions
• The hash function must be fast so that it does not

become a bottleneck
In this report, we study the hash functions used in

the two frequently used flow monitors Vermont and
nProbe (Section II). We identify possible vulnerabilities
that can be exploited for directed attacks against the
flow monitor. Vermont uses CRC to hash flow keys,
so we specifically analyze this hash function for vul-
nerabilities (Section III). Furthermore, we demonstrate
the feasibility of such attacks and present selected
measurement results (Section IV). Finally, we discuss
possible countermeasures and give some conclusions
(Section V).

II. HASH FUNCTIONS USED IN VERMONT AND NPROBE

Vermont and nProbe use different functions to calcu-
late the hash keys for incoming packets. The input for
the hash function is given by the specification of the
flow template. This template includes so-called flow
keys that define the fields used as grouping criteria.
A 5-tuple flow aggregation would have the flow keys
<srcI P, dst I P, srcPor t, dstPor t, proto>.

Whereas nProbe uses simple binary addition of all
flow keys for its hash function, Vermont uses a nested
call hierarchy of the CRC32 algorithm. In the follow-
ing, we analyze both techniques and determine their
attack vectors.

A. Hash index calculation in nProbe

Due to the simplicity of nProbe’s hash function, it is
easy to see how collisions can be created. Assuming
packets with the same values in source IP address
(srcI P), destination IP address (dst I P), source port
(srcP), destination port (dstP), and protocol (proto)
are aggregated to a single flow, nProbe would calculate
the hash key k of size hsize as follows:

k = (srcI P + dst I P + srcP + dstP + proto)

mod hsize (1)

Every packet producing the same result from Equa-
tion 1 will be stored in the same hash bucket and
will therefore increase the length of the corresponding
bucket list. If an attacker wants to create a packet
pi+1, which collides with packet pi, he simply sets
srcPpi+1

= srcPpi
− 1, srcI Ppi+1

= srcI Ppi
+ 1, and

copies all other flow keys. Both packets then produce
the same hash key. Attackers usually avoid modifying
dst I P, as the packet may not reach the targeted
monitoring system anymore – unless the attacker has
more information about the network structure.

Since the goal is to deplete resources of the network
monitor, it is not necessary that the packet is actually
accepted by a receiver. It is therefore possible to
modify all the remaining fields used in Equation 1
– resulting in four freely changeable fields: srcI P
(32 Bit), srcP (16 Bit), dstP (16 Bit), and proto (1 Bit
for TCP and UDP, assuming no other protocol will
be used). Thus, it is theoretically possible to create
(232× 216× 216× 21)/hsize different packets matching
the same hash bucket. For a hash table size of 16 Bit,
249 flows can be created that are added to the same
hash bucket. Even if the destination port cannot be
varied, e.g. due to installed firewalls, still 233 different
flows are matching a single hash bucket.

We captured a packet trace from a network and used
nProbe to aggregate it to flows. hsize was set to 216

and nProbe was configured not to remove any buckets
from its hash table during the test. Figure 1 shows
the utilization of hash buckets after 3 million packets.
Whereas the distribution over all buckets seems to
work appropriately, there is a noticeable amount of
buckets that contain a considerably larger number
of entries. Thus, the distribution is not uniform –
however, in the general case, the number of overused
buckets might be small enough to ensure a proper
operation of the flow aggregation.

B. CRC32 based hashing in Vermont

Instead of summing up all flow keys, Vermont cal-
culates hash keys via repeated execution of the CRC32
checksum algorithm. Listing 1 shows Vermont’s index
calculation for the hash table. The initial seed value
can either be constant or random. Flow aggregation
with five flow keys results in calling the CRC32 func-
tion five times. Furthermore, each result from the
preceding calculation is used as the seed for the next
calculation.

We used the identical test setting as in the hash
bucket test of nProbe: Vermont was configured not

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

Figure 1. Distribution of nProbe’s hash function

Figure 2. Distribution of Vermont’s hash function

to remove any entries from its hash table with size
216 and used the same packet trace to monitor 3
million packets. Figure 2 shows that this method
offers a roughly uniform distribution over the hash
table and, thus, fulfills one of the three requirements.
Furthermore the CRC32 algorithm performs quite fast,
so its usage as a hash function seems suitable.

Listing 1. Calculate hash bucket
1 hash = seed;
2 flowkey = flowkeys.first();
3 while (flowkey != null)
4 {
5 hash = crc32(hash, flowkey);
6 flowkey = flowkey->next;
7 }
8 return hash;

III. LIMITATIONS OF THE CRC HASH

In order to show that the CRC32 algorithm does
not provide appropriate collision resistance, we first
explain the operation of CRC32. The most frequently
used method in performance critical systems is the
use of the direct lookup table method [9], which is
depicted in Figure 3. This algorithm, which is listed in

byte string -->---+
|

byte 3 2 1 0 V
+---+---+---+---+ |
| | | | |>---XOR
+---+---+---+---+ |

| |
XOR V
^ |

+---+---|---+---+ |
| | | | | |
+---+---+---+---+ |
: : : : : <---+
+---+---+---+---+
| | | | |
+---+---+---+---+

Precomputed lookup table

Figure 3. Working principle of the CRC32 lookup table
method [10]

detail in Algorithm 1, works on a per byte basis. The
creation of the lookup table is depicted in Listing 2.

Listing 2. Lookup table creation
1 for(int i = 0; i < 256; i++)
2 {
3 CRC = i;
4 for(int j = 8; j > 0; j--)
5 {
6 if(CRC & 1)
7 CRC = (CRC >> 1) ^ GeneratorPoly;
8 else
9 CRC >>= 1;

10 }
11 CRCTable[i] = CRC;
12 }

It has been shown that it requires the change of
n Bit in the byte stream to create a collision for a
CRC-n function [10]. Please note that these collisions
are calculated and not the result of a plain brute force
attack. Collisions for a known seed can be calculated
straight forward.

The IEEE recommended CRC32, which has been first
proposed in 1975 [11], uses 0xFFFFFFFF as the initial
seed. This seed is placed in the register before the
algorithm is executed. Before returning the final result,
i.e. the value of the register after processing all bytes,
the register is XORed with a final value. This final

Algorithm 1 CRC calculation
1: move seed s into register r
2: while there are input bytes i to process do
3: put lowest byte of r in id x
4: Shift r right by one byte
5: XOR id x with new byte from i to yield index

into lookup table
6: XOR lookup table value into register r
7: end while
8: XOR final value f into register r

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

XOR is 0xFFFFFFFF for the CRC32, i.e. the bits of the
register are simply flipped. The CRC16 uses 0x0000
for both initial seed and final XOR value.

In the following, we refer to the computation of the
CRC of byte vector a for seed s as crc(s, a). For the
CRC32, four bytes are needed to create a collision.
Those bytes do not have to be added to the end, but
can be placed anywhere in the byte array as shown
in [12]. Furthermore, it is also possible to change four
bytes that are already existing based on two given byte
arrays a, b of arbitrary length, a byte vector x with a
length of 4 Byte, a seed value s, and the final XOR
value f . Assuming we want to find crc(s, ax b) = Y ,
we simply calculate a seed s′ so that crc(s′, b) = Y ,
then an x can be found so that crc(s, ax) = f ⊕ s′.
This will result in crc(s, ax b) = Y .

Even nested CRC32 calls do not provide additional
security against collision attacks. Let s be again the
initial seed value, a, a′, b, and c random strings, and
f be the final XOR value, then

crc(crc(s, a), b) = crc(crc(s, a′), b)

⇔ crc(s, a′) = crc(s, a).

Furthermore, it holds

crc(crc(s, b), a) = crc(s, ca)

⇔ crc(s, c)⊕ f = crc(s, b).

For CRC16, the initial seed and final XOR value are
set to 0x0000, so

crc(s, ab) = crc(f ⊕ crc(s, a), b)

= crc(crc(s, a), b).

Collisions found for one seed value will not neces-
sarily collide for another seed value. However, it is pos-
sible to use already found collisions and add a prefix so
they will collide for another seed. Let the byte vectors
a and b collide for seed s, i.e. crc(s, a) = crc(s, b).
We can now let these byte arrays collide for seed s′

by adding a prefix p, which will fill the register with
value s, i.e. f ⊕crc(s′, p) = s. If such a p is found, then

crc(s′, pa) = crc(s′, pb)

= crc(s, a)

= crc(s, b).

A possible countermeasure against attacks based on
the described hash collision procedure would be to use
a random seed value, i.e. to make it impossible for the
attacker to guess the seed to use for the collision cal-
culations. Unfortunately, we found out that two strings

a and b with |a|= |b| will collide independently of the
seed. For simplicity reasons, we only show this for the
CRC16.

Collisions are seed independent if the bytes used
to create collisions are independent of the seed. If a
collision for a three byte long vector ~k = k0k1k2 should
be found, we need to calculate x1 x2 to a given x0 so
that crc(s,~k) = crc(s, ~x).

Using the table lookup function lkp (see Listing 2),
the calculation of the CRC crc(s,~k) = crc(s, k0k1k2)
works as follows:

crc(s,~k):
iter. hi(r) lo(r) table lookup

0 hi(s) lo(s) a0 = lkp(lo(r)⊕ k0)
1 hi(a0) hi(s)⊕ lo(a0) a1 = lkp(lo(r)⊕ k1)
2 hi(a1) hi(a0)⊕ lo(a1) a2 = lkp(lo(r)⊕ k2)
3 hi(a2) hi(a1)⊕ lo(a2) r ⊕ f = CRC

~r denotes the register, and hi() and lo() refer
respectively to the higher and lower byte of the given
variable. Each iteration shows the state of ~r at the
Similarly, crc(s, ~x) = crc(s, x0 x1 x2) can be calculated:

crc(s, ~x):
iter. hi(r) lo(r) table lookup

0 hi(s) lo(s) a′0 = lkp(lo(r)⊕ x0)
1 hi(a′0) hi(s)⊕ lo(a′0) a′1 = lkp(lo(r)⊕ x1)
2 hi(a′1) hi(a′0)⊕ lo(a′1) a′2 = lkp(lo(r)⊕ x2)
3 hi(a′2) hi(a′1)⊕ lo(a′2) r ⊕ f = CRC

The high byte of each entry in the lookup table is
unique [10]. Thus, from crc(s,~k) = crc(s, ~x) it can be
concluded that a2 = a′2 and a1 = a′1. This means that

hi(s)⊕ lo(a′0)⊕ x1 = hi(s)⊕ lo(a0)⊕ k1

⇒ x1 = lo(a′0)⊕ lo(a0)⊕ k1

= lo(lkp(lo(s)⊕ x0))⊕
lo(lkp(lo(s)⊕ k0))⊕ k1

and furthermore

hi(a′0)⊕ lo(a′1)⊕ x2 = hi(a0)⊕ lo(a1)⊕ k2

⇒ x2 = hi(a′0)⊕ hi(a0)⊕ k2

= hi(lkp(lo(s)⊕ x0))⊕
hi(lkp(lo(s)⊕ k0))⊕ k2.

To prove that x1 and x2 are independent of s, we
have to show that lkp(lo(s) ⊕ x0) ⊕ lkp(lo(s) ⊕ k0))
is independent of s. This can be done by studying

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

the lkp() function, which is described in Listing 2.
This function creates the lookup table used for the
CRC calculation. A mathematical representation of the
lkp() function is given below (we assume that lkp(x)
will create the lookup table entry for index x , with
Gi being the i’th bit of the generator polynomial and
ci(t) referring to the i’th bit after the t ’th iteration):

~c(0, x) = x

ci(t, x) =







0 i > 15

(Gi&c0(t − 1, x))
⊕ci+1(t − 1, x) i ≤ 15

lkp(x) = ~c(7, x)

Looking into the calculation of the i’th bit of
lkp(lo(s)⊕ x0)⊕ lkp(lo(s)⊕ k0)), first we show that
the calculation only depends on the first iteration of
the lkp() function:

ci(t, x)⊕ ci(t, k) =

= ((Gi&c0(t − 1, x))⊕ ci+1(t − 1, x))⊕
((Gi&c0(t − 1, k))⊕ ci+1(t − 1, k))

= (Gi&c0(t − 1, x))⊕ (Gi&c0(t − 1, k))⊕
ci+1(t − 1, x)⊕ ci+1(t − 1, k)

= (Gi&(c0(t − 1, x)⊕ c0(t − 1, k)))⊕
ci+1(t − 1, x)⊕ ci+1(t − 1, k)

Now that we have reduced the problem of ~c(t, x)⊕
~c(t, k) to ~c(t−1, x)⊕~c(t−1, k), it is sufficient to show
that all seed bits cancel each other out for ~c(0, x)⊕
~c(0, k):

~c(0, x)⊕~c(0, k) = lo(s)⊕ x0⊕ lo(s)⊕ k0

= x0⊕ k0

If it can further be shown that this is valid not
only for vectors of length three but for byte arrays
of arbitrary length, we can prove that collisions for
the CRC16 algorithm are independent of the seed if
both input vectors have equal length. The calculation
of crc(s,~k) and crc(s, ~x) with |~x |= |~k|= n is similar to
the two-byte operation.

crc(s,~k):
iter. hi(r) lo(r) table lookup

0 hi(s) lo(s) a0 = lkp(lo(r)⊕ k0)
1 hi(a0) hi(s)⊕ lo(a0) a1 = lkp(lo(r)⊕ k1)
. . . .
. . . .
n-1 hi(an−2) hi(an−3)⊕ lo(an−2) an−1 = lkp(lo(r)⊕ kn−1)
n hi(an−1) hi(an−2)⊕ lo(an−1) an = lkp(lo(r)⊕ kn)
n+1 hi(an) hi(an−1)⊕ lo(an) r ⊕ f = CRC

crc(s, ~x):
iter. hi(r) lo(r) table lookup

0 hi(s) lo(s) a′0 = lkp(lo(r)⊕ x0)
1 hi(a′0) hi(s)⊕ lo(a′0) a′1 = lkp(lo(r)⊕ x1)
. . . .
. . . .
n-1 hi(a′n−2) hi(a′n−3)⊕ lo(a′n−2) a′n−1 = lkp(lo(r)⊕ xn−1)
n hi(a′n−1) hi(a′n−2)⊕ lo(a′n−1) a′n = lkp(lo(r)⊕ xn)
n+1 hi(a′n) hi(a′n−1)⊕ lo(a′n) r ⊕ f = CRC

For the computed bytes xn−1 and xn, the bytes that
create the collision, we now have:

xn−1 = hi(a′n−3)⊕ hi(an−3)⊕
lo(a′n−2)⊕ lo(an−2)⊕ kn−1

xn = hi(a′n−2)⊕ hi(an−2)⊕ kn

We already demonstrated that all seed bits are
canceled for n = 2. In order to show that this holds
for any n, we have to prove that ai⊕a′i is independent
of s. The CRC algorithm shows that values for ai (and
a′i likewise) can be calculated as follows:

a0 = lkp(lo(s)⊕ k0)

a1 = lkp(hi(s)⊕ lo(a0)⊕ k1)

ai = lkp(hi(ai−2)⊕ lo(ai−1)⊕ k1)

With this knowledge, first, it can be seen that
increasing n by one results into one additional nested
call to lkp() in an−2 and a′n−2. If |~x |= |~k|, the number
of nested calls are equal. Secondly, as shown in List-
ing 2, the lkp() function performs bit-wise operations
and each input bit will always affect the output bits
at the same position. This means the input bits of the
innermost nested call to lkp() will affect the same bits
of the final outcome.

Due to its recursive nature, the results of the two
innermost calls will be a0 and a1, or a′0 and a′1,
respectively. This results in s affecting the same bits
in ai and a′i . Hence ai⊕ a′i will cancel out all bits of s,
thus, xn and xn−1 are independent of s.

N.B., if |~x | 6= |~k|, the number of nested calls on both
sides differ and the seed bits will affect different bits
of the final outcome, thus will not cancel each other
out.

Exploiting the knowledge that random CRC seeds do
not protect against hash collision attacks, an attacker
can construct packets that produce hash collisions, i.e.
the corresponding flows will be stored in the same
hash bucket in Vermont. For random destination and
source ports, it is possible to create any CRC value

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

by manipulating the source IP field, which provides
sufficient space for the needed bytes.

Say an attacker wants to create collisions for the
hash key Y . Using the IP-5-tupel as flow keys, Vermont
calculates the hash key as follows:

Y = crc(. . . (crc(s, srcI P), dst I P), prot), srcP), dstP).

The attacker then does the following:
• Choose random values for srcP ′ and dstP ′

• Calculates seed s′ so that
Y = crc(crc(s′, srcP ′), dstP ′).
This is possible using the reverse CRC operation
described in [10].

• If the destination IP should not be changed and
the protocol is either TCP or UDP, then calculate
seed s′′ so that crc(crc(s′′, dst I P), prot) = s′.

• In a final step, the necessary source IP is calcu-
lated so that crc(s, srcI P) = s′′.

With this method, it is possible to create 216×216×
21 = 233 different flows for which the Vermont CRC32-
based hashing algorithm produces the same hash
value. Because all of the above fields have the same
length for each packet, they will collide independently
of the seed.

IV. ATTACKING THE NETWORK MONITOR

We evaluated the identified threats for producing
attacks against the hash based data structures of typ-
ical flow monitors. In particular, we explored this for
nProbe and Vermont. For all our experiments, we pre-
pared a test network consisting of two server PCs (Dual
Xeon 2 GHz) directly connected over a 100 MBit/s
network link to evaluate the particular attack model.
The network monitoring software was installed on
one PC while the attack was launched from the other
one. In a first test, we simulated a typical SYN flood
based DoS attack [13] by randomly creating TCP SYN
packets and sending these to the monitor. The attack
packets were sent using the tcpreplay toolkit [14].

For our experiments, we configured the hash table
size to 216 buckets. Both the passive and active timeout
were set to values larger than 60 s, thus, no packets
were exported during the test. Figure 4 shows the
results of our experimental attacks against nProbe and
Vermont. Each value represents the average percent-
age dropped packets over a 60 s interval.

While the regular SYN-based DoS attack reached
a maximum of about 6 % of dropped packets, the
hash collision attack only needed a data rate of about
7500 packets/s to exceed 90 % of dropped packets.

0 10000 20000 30000 40000 50000

0
20

40
60

80
10

0

transmission rate (packets/s)

dr
op

pe
d

pa
ck

et
s

(%
)

●

●

●

●

●

●
●
●
●
●●

●●

● Hash collision attack Vermont
Hash collision attack nProbe
SYN DoS attack Vermont

Figure 4. DoS vs. hash collision attacks on Vermont and nProbe

0 20 40 60 80 100 120
0

10
30

50
70

90

time (s)

dr
op

pe
d

pa
ck

et
s

(%
)

●●●●●●●●●●●●●●●

●
●
●
●
●●

●●
●●

●●
●●

●●
●●●●

●●●
●●●●

●●●●●
●●●●●●

●●●●●●●
●●

●

●

●

●
●●

●●
●●

●●
●●●

●●●
●●●●

●●●●
●●●

●

●
●●●

●●
●●

●●●
●●●

●●●●
●●●●

●●●●●
●●

● 1000 packets/s
2500 packets/s
10000 packets/s

Figure 5. Hash collision attack with different speeds

Note that the hash table size has no influence on
the hash collision attack, but only on the SYN DoS
attack because the former just targets one bucket,
while the latter spreads over the whole data structure.
As can be seen, the hash collision attack is similarly
effective for nProbe and Vermont. The SYN DoS attack
is only shown for Vermont. The results for nProbe were
similar.

In order to measure the effect of flow exporting on
the collision attack, we configured Vermont’s export
interval to 30 s with a passive timeout of 30 s. In this
set of experiments, we used three different packet
rates for the hash collision attack. The results are
depicted in Figure 5.

It took a few seconds for the hash bucket list to
exceed some maximum length (which is dependent
on the available processing performance of the used
CPU) for the lower attack rates. As can be seen,
10000 packets/s were enough to exceed a rate of 50 %
dropped packets after one second and 90 % of dropped
packets after three seconds. The longer the bucket
list is, the more packets are dropped because it takes
longer time to traverse the list.

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

su
pe

rse
de

d b
y

co
nfe

ren
ce

 ve
rsi

on

There are no flows exported in the first export
because there are no flows older than 30 s. The second
export at 60 s will shorten the bucket list by the
amount of flows received and progressed longer than
30 s ago. Although this should be a considerable per-
centage of all saved flows it only has temporary effects
because the bucket list will instantly be filled again by
the attacker. With an attack speed of 10 000 packets/s
even the temporary effect is only marginal. N.B., an
attack speed of 10 000 packets/s results in a transmis-
sion rate of about 4 MBit/s due to the small packet
size of 54 byte.

V. CONCLUSION

The obvious countermeasure against the hash colli-
sion DoS is a hash function for which collisions cannot
easily be created. Cryptographic hash functions such
as MD5 [15] or SHA-1 [16] would provide such a
feature but take too long to compute to be efficiently
deployed in a flow monitor. It seems that a randomized
permutation table could offer sufficient speed and
security but this has yet to be tested. There might
be an even easier solution using random values with
simple addition and multiplication. Finding an optimal
function for hash table organization in flow monitoring
will be future research.

REFERENCES

[1] R. Sommer and A. Feldmann, “NetFlow: information loss or
win?” in 2nd ACM SIGCOMM Internet Measurement Workshop
(IMW 2002). Marseille, France: ACM, November 2002, pp.
173–174.

[2] T. Limmer and F. Dressler, “Seamless Dynamic Reconfig-
uration of Flow Meters: Requirements and Solutions,” in
16. GI/ITG Fachtagung Kommunikation in Verteilten Systemen
(KiVS 2009). Kassel, Germany: Springer, March 2009, pp.
179–190.

[3] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Ver-
mont - A Versatile Monitoring Toolkit Using IPFIX/PSAMP,”
in IEEE/IST Workshop on Monitoring, Attack Detection and
Mitigation (MonAM 2006). Tübingen, Germany: IEEE,
September 2006, pp. 62–65.

[4] L. Deri, “nProbe: an Open Source NetFlow Probe for Gigabit
Networks,” in TERENA Networking Conference (TNC 2003),
Zagreb, Croatia, May 2003.

[5] B. Claise, “Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Infor-
mation,” IETF, RFC 5101, January 2008.

[6] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer,
“Information Model for IP Flow Information Export,” IETF,
RFC 5102, January 2008.

[7] B. Claise, “Cisco Systems NetFlow Services Export Version
9,” IETF, Tech. Rep. RFC 3954, October 2004.

[8] G. Carle, F. Dressler, R. A. Kemmerer, H. König, C. Kruegel,
and P. Laskov, “Manifesto - Perspectives Workshop: Network
Attack Detection and Defense,” in Dagstuhl Perspectives Work-
shop 08102 - Network Attack Detection and Defense 2008,
Schloss Dagstuhl, Wadern, Germany, March 2008.

[9] D. V. Sarwate, “Computation of Cyclic Redundancy Checks
via Table Look-Up,” Communications of the ACM, vol. 31,
no. 8, pp. 1008–1013, 1988.

[10] Anarchriz/DREAD, “CRC and how to Reverse it,” April
1999. [Online]. Available: http://www.woodmann.com/
RCE-CD-SITES/Anachriz/programming/crc.htm

[11] K. Brayer and J. L. Hammond Jr, “Evaluation of error de-
tection polynomial performance on the AUTOVON channel,”
in National Telecommunications Conference, vol. 1. New
Orleans, LA: IEEE, December 1975, pp. 8–21 to 8–25.

[12] B. Maxwell, D. R. Thompson, G. Amerson, and L. Johnson,
“Analysis of CRC methods and potential data integrity ex-
ploits,” in International Conference on Emerging Technologies,
Minneapolis, MI, August 2003, pp. 25–26.

[13] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN Flooding
Attacks,” in 21st IEEE Conference on Computer Communica-
tions (IEEE INFOCOM 2002), New York, NY, June 2002.

[14] A. Turner, “tcpreplay.” [Online]. Available: http://tcpreplay.
synfin.net/trac/wiki/tcpreplay

[15] R. Rivest, “The MD5 Message-Digest Algorithm,” IETF, RFC
1321, April 1992.

[16] D. Eastlake and P. Jones, “US secure hash algorithm 1
(SHA1),” IETF, RFC 3174, September 2001.

David Eckhoff, Tobias Limmer and Falko Dressler, "Hash Tables for Efficient Flow Monitoring: Vulnerabilities and Countermeasures,"
Proceedings of 34th IEEE Conference on Local Computer Networks (LCN 2009): 4th IEEE LCN Workshop on Network Measurements (WNM 2009),

Zurich, Switzerland, October 2009, pp. 1087-1094.
doi: 10.1109/LCN.2009.5355211

