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Abstract—The reduction of CO2 emissions is one of the most
anticipated features of future transportation systems. Smart
traffic lights are believed to contribute to achieving this by either
adapting their signal program or by informing approaching
drivers. In this paper we investigate the potentials and limitations
of the latter, that is, Green Light Optimal Speed Advisory
(GLOSA) systems in a realistic, large scale simulation study. We
examine the impact of different equipment rates of both traffic
lights and vehicles on environmental related metrics but also
study how these systems can increase the comfort for drivers by
reducing waiting times and the number of stops.

We find that at low traffic densities these systems can meet all
their goals and lower CO2 emissions by up to 11.5 % whereas
in dense traffic several side-effects could be observed, including
overall longer waiting times and even higher CO2 emissions for
unequipped vehicles.

I. INTRODUCTION

Intelligent Transportation Systems (ITS), including the pos-
sibility to wirelessly exchange information among vehicles and
between vehicles and various types of infrastructure, offer a
broad range of applications [1]. While Car-2-X communication
was shown to be able to help improve traffic safety [2], [3],
the positive impact on comfort and on the environment is also
an important factor in successfully bringing this technology
onto the market.

In its Energy Roadmap 2050, the European Union has set
a goal to reduce emissions of greenhouse gases by 80%-
95% until 2050 (compared to 1990 levels). Decreasing the
CO2 emissions caused by internal combustion engine vehicles
could substantially help reach this goal while at the same time
improve air quality and thereby the quality of life – especially
in urban environments. A great deal of these CO2 emissions
are caused by the constant stopping and starting at traffic
light regulated intersections. Because optimization of traffic
light programs can only help to a certain extent, automobile
manufacturers as well as academic institutions investigate
the possibility and benefits of providing this information
to the vehicles [4]. In-advance knowledge about the traffic
light program, that is, the duration of red and green phases,
can enable vehicles to autonomously suggest certain driving
strategies to drivers in order to avoid stops at traffic lights
and hence reduce CO2 emissions and (directly proportional)
fuel consumption [5], [6]. The exchange of traffic light signal
information has already been standardized and is achieved
through the transmission of so called SPAT (Signal Phase and
Timing) messages [7], [8].

Even though smart traffic lights were already field-tested
within research projects such AKTIV [9] or CVIS [10], there
exists no city-scale evaluation that shows overall benefits and
limitations of these system. To the best of our knowledge,
we are the first to investigate effects such a system has on
unequipped vehicles while also varying equipment rates of
both traffic lights and vehicles. Unlike most of the related
work in this field, we deploy a nearly optimal driving strategy
to identify the absolute potential of Green Light Optimal Speed
Advisory (GLOSA) systems. Instead of only allowing vehicles
to accelerate, brake or coast (i.e., not actively accelerating
or braking), we account for the fact that freewheeling, i.e.,
when the clutch is disengaged, is often beneficial when it
comes to fuel saving. All of these maneuvers have different
characteristics regarding CO2 emissions and fuel consumption,
and (as we show in this paper) oftentimes a combination
of them is the best strategy to approach a traffic light. We
extended existing emission models to accurately reflect the
effects of the chosen strategy and evaluated a traffic light
assistance system in a large scale simulation while particularly
focusing on the effects on unequipped vehicles and traffic flow
in general.

In brief, the main contributions of this work can be sum-
marized in four aspects:

• we measure the (best case) environmental impact (in
terms of fuel consumption and CO2) when using an
optimal driving strategy

• we investigate the potential benefit as a comfort system
(in terms of waiting time and stop count)

• we evaluate necessary preconditions for such systems (in
terms of traffic density, percentage of equipped traffic
lights, and fraction of equipped vehicles)

• we discuss possible limitations caused by traffic light
assistance systems and identify necessary traffic densities
in which operation can be beneficial.

The remainder of this paper is organized as follows: In
Section II we give an overview of related work in the field of
traffic light assistance systems as well as driving strategies. In
Section III we discuss the envisioned system followed by the
presentation of the used algorithm (Section IV). The setup and
details of our extensive simulations along with the evaluation
will be presented in Section V. Finally, Section VI concludes
our work.



II. RELATED WORK

In 1983 Volkswagen introduced the Wolfsburger Welle, the
first driver assistance system to make use of traffic light
information [11]. Infrared equipped traffic lights would inform
approaching drivers whether their current speed allows them
to benefit from synchronized traffic lights. A mechanical on-
board display used this information to then give suggestions
to the driver. Technical difficulties and low profit ratios led to
discontinuation of the project.

In 2005 Richter proposed to optimize throughput at traffic
light regulated intersections by giving each driver an individual
speed recommendation [12]. This approach was evaluated
using microscopic traffic simulation showing that total CO2

emissions could be reduced by up to 15%. However, the used
driving strategy was not optimal as deceleration was only
achieved by actively braking the car. Furthermore, legal con-
straints were not accounted for, allowing vehicles to go below
the minimum acceptable speed. In this work, we deploy a near
optimal driving strategy while also considering maximum and
minimum speeds.

Travolution, a research project situated in Ingolstadt, Ger-
many, focused on improving traffic light programs and also on
establishing an IEEE 802.11p [13] enabled communication to
transfer traffic light information to vehicles [4]. Drivers were
recommended a certain speed in order to avoid stopping at
red lights. The study showed that such a system can also
work with dynamic traffic lights (i.e, those that do not strictly
follow a static program but adjust to current traffic measured
by cameras or inductors). The amount of stops could be
reduced by 17%, however, no information on emissions or
fuel consumption was given.

Tielert et al. investigated which parameters have the biggest
impact on fuel consumption using microscopic traffic simula-
tion [5]. They identified that the impact of communication
traffic lights depends on the information distance, that is,
the remaining distance to the traffic light when the vehicle
learns about the traffic light program. They state that an
information distance higher than approx. 500 m to 600 m does
not offer an additional benefit. From this they follow that the
communication model in a simulative performance evaluation
can be abstracted with the help of this information distance – a
fact of which we make use in this paper. The deployed driving
strategies, however, only included acceleration, active braking,
and gear choice. We make use of all driving maneuvers to
give more accurate information on possible fuel saving and
therefore CO2 reduction in a realistic scenario while also
examining unequipped vehicles.

A computational approach to finding the optimal speed
to approach a traffic light was presented by Alsabaan et
al [14]. Their study includes the utilization of (idealized)
multi-hop communication to disseminate traffic light programs
and speed advisory information. Different driving strategies
were neglected and CO2 emissions were only based on braking
and acceleration. Also, their system model only consisted of
one intersection.
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Figure 1. Trajectories of informed and uninformed drivers. The uninformed
driver has to stop at the red light, while the informed driver arrives when the
signal turns green.

Performance of GLOSA systems was also investigated in
the scope of the PREDRIVE C2X project [15]. Authors
present an algorithm for the computation of the advised speed
and simulate the system using two simple small-scale scenar-
ios. The small road networks with only two or four traffic
lights respectively did not allow for a detailed analysis of the
limitation of such systems. A realistic mix of regulated and
unregulated intersections, however, can have a considerable
impact on both informed and uninformed drivers as we will
show in this paper.

The full potential of GLOSA systems through the choice of
an optimal driving strategy was investigated by Raubitschek et
al. [6]. They introduced two new strategies to the simulative
performance evaluation, namely freewheeling (i.e., neutral
gear) and coasting (any gear, no throttle). A submicroscopic
evaluation and real life experiments showed that an average
decrease of fuel consumption (and CO2 emissions) of about
13% could be reached. However, only a single traffic light was
investigated and vehicles did not influence each other in any
way. In this paper we use these proposed driving strategies to
conduct a large scale simulation to not only gain insights on
the benefits of traffic light assistance systems but also on the
implications such a system could have.

We contribute to the field of intelligent traffic lights by
further investigating different traffic densities, equipment rates,
and comfort metrics such as waiting times and the number of
stops.

III. INTELLIGENT TRAFFIC LIGHTS

Intelligent traffic lights are believed to play an important
role in tomorrow’s transportation system as they are a major
factor in the optimization of traffic flows [16]. Dynamic traffic
light programs can adapt to current traffic in order to lower
waiting times and increase traffic throughput [4], [17].

Equipped with communication devices, traffic lights could
also inform approaching vehicles of the current traffic light



program to further reduce the amount of stops and starts in
order to decrease CO2 emissions and fuel consumption [5].

As shown in Figure 1, this information can be used by an
approaching driver to alter his original trajectory through the
use of certain driving maneuvers, such as braking, freewheel-
ing, or coasting to avoid having to stop at the red light but
arrive shortly after the signal turns green.

In this paper, we analyze the potential of GLOSA systems
with the help of communicating traffic lights in terms of CO2

reduction in a large scale simulation and also identify side-
effects such a system could have on other vehicles. The used
communication technology does not play an important role as
long as an information distance (i.e, the distance to a traffic
light at the time the driver is informed of the red and green
phases) of about 500 m can be guaranteed [5]. In order to
identify the maximum potential of communicating traffic lights
we do not model communication but assume that equipped
vehicles can always inform the driver about the next intelligent
traffic light they are approaching 500 m in advance.

IV. THE OPTIMAL DRIVING STRATEGY

Given the traffic light program (i.e., duration of red and
green phases) of the next traffic light a driver can approach
the intersection in different ways. The vehicle can be in six
different states which have specific CO2 emission and (directly
proportional) fuel consumption characteristics (N.B. we ne-
glect emissions caused by auxiliaries such as air conditioning):

• Constant Velocity: The vehicle moves with constant
speed when the driving force equals all resistances (air,
friction, ...). Emissions are based on the sum of all
resistances.

• Acceleration: The vehicle increases its speed. Emissions
are highest in this state.

• Braking: Activation of the mechanical friction brake
reduces the velocity of the vehicle. CO2 is not emitted in
this state.

• Stopping: The vehicle is not moving. The engine can be
automatically turned off through the use of the start-stop
system. When the engine is turned off no CO2 is emitted.
Restarting the engine will emit about as much CO2 as if
the engine was idling (neutral gear) for a few seconds.

• Freewheeling: When the gearbox is disconnected from
the power-train the velocity of the vehicle will decrease
over time. The distance possible to cover in this state is
proportional to the initial speed. Drivers of vehicles with
manual transmission have to enter this state by putting in
the neutral gear. Modern automatic transmission vehicles
can do this automatically. CO2 emissions in this state are
relatively low because the engine is idling.

• Coasting: The driver does not actively accelerate or
decelerate and does not put in the neutral gear. The
power-train remains connected to the gearbox and is
driven by the kinetic energy of the vehicle. In general the
vehicle does not emit CO2 in this state but velocity will
drop considerably faster. Figure 2 shows the difference
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Figure 2. Coverable distances when coasting or freewheeling based on
findings in [6]

between freewheeling and coasting in terms of reachable
distance with an initial speed of 100 km/h.

Finding the optimal combination of strategies to minimize
the amount of CO2 emitted is an NP-hard problem and
can only be found through evaluating all possible solutions.
Authors in [6] describe an approach to find an optimum,
however, this is computationally complex and was only done
for a single vehicle at a single traffic light. This computation
can hardly be done on an electronic control unit within a
vehicle or in a large scale simulation for a high number of
vehicles and traffic lights. We therefore try to approximate
the optimal solution that not only prefers to arrive at the
beginning of a green phase if possible but also accounts for
legal constraints on German streets.

Depending on the type of street a minimum velocity vmin
has to be maintained if possible. In relation to the maximum
allowed speed vmax it holds that vmin ≈ 0.6 × vmax on all
German roads. From this it follows that the advised speed to
a driver vadv must always be in an interval:

0.6× vmax ≤ vadv ≤ vmax (1)

A simplified version of our algorithm is shown in Figure 3.
The algorithm is called every time step and its outcome is a
suggestion to the driver. In a first step we compute the virtual
arrival time for vmax and check if the traffic light is green
upon arrival. If this is the case, the system advises the driver
to accelerate to/hold vmax. If the required speed to arrive at
a green traffic light is greater than the current one the driver
should accelerate unless this speed is greater than the speed
limit. If it’s lower, i.e., the driver is currently too fast and will
arrive at a red light when maintaining the current velocity,
it is checked if freewheeling is a possible solution. For this,
deceleration and coverable distance in the freewheeling mode
have to be computed based on individual parameters of the
vehicle such as weight or the initial speed. We prioritized
freewheeling over coasting because of its better energetic
characteristics and the resulting considerably larger range (cf.
Figure 2). In cases where freewheeling is insufficient, i.e., the
vehicle arrives at the traffic light before it turns green, it is
evaluated whether coasting offers a solution. Should this not
be the case, the driver is advised to brake unless the required
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Figure 4. Relative fuel savings of informed drivers over uninformed drivers.
Comparison of our algorithm to find an approximation of the optimal solution
in comparison to the presented optimum in [6]

velocity is lower than the minimum speed – in this case a stop
is unavoidable. Our algorithm never advises drivers to pass an
amber traffic light.

Figure 4 shows our results compared to the optimal solution
presented in [6]. We rebuilt the evaluated scenario and devel-
oped an approximative light-weight algorithm in order to find
the best strategy. Differences in the graph can be explained by
differing calibrations of the driving mode, i.e., their assigned
fuel consumption. Fuel saving (and thereby CO2 reduction)
averaged at about 13.7% in our approximation and 13% in
the solution presented in [6]; this shows that our simulation
and algorithm produce sufficiently accurate results to conduct
a large scale simulation.

Table I
SIMULATION SETUP

Parameter Meaning/Value

ρ vehicle equipment rate [0%-100%]
σ traffic light equipment rate [0%-100%]
D Traffic density, either Ia, Ib, II, or III
Number of Vehicles 169 – 3376
Area 5.6 km × 1.6 km
Information Distance 500 m
Regulated Junctions 80 %
TL Program 40 s red, 30 s green
Vehicle Types VW Polo IV 1.4, BMW F10 535i,

BMW E71 X6 M
Emission Model EMIT (extended)
Simulator Veins (SUMO)

V. SIMULATION

We conducted a large scale simulation to identify side
effects and benefits of traffic lights equipped with communi-
cation devices. We used the simulation framework Veins [18]
coupling OMNeT++ and the traffic simulator SUMO [19]
which we extended to support driving modes such as coasting
and freewheeling.

The plotted figures show the average values over all vehicles
in the annotated sets, e.g., all equipped or non-equipped
vehicles. To understand the meaningfulness of the presented
results better, we also investigated box-plots for all traffic
densities, and found that the notches were almost always non-
overlapping for the lower traffic densities (Ia, Ib). For the
higher densities, that is, density II and especially III, this
was not always the case. These results must be understood
as tendencies or indicators for the overall system performance
instead of absolute values.

To fully explore the potential of GLOSA systems we assume
that a driver always follows the suggested driving strategy; we
note that in a real life scenario a driver might also choose
not to. To account for these effects a psychological driver
model [20] would have to be deployed, however, empirical
data on the acceptance of speed recommendation of traffic
light assistance systems was not available at the time of
writing. It has been shown that such psychological behavior
can be approximated using the vehicle equipment rate [20].

A. Setup

According to [21] and [22] traffic densities can be classified
into four subregions (cf. Figure 5). These subregions give
information about how independent a driver is, that is, to what
extent driving maneuvers and decisions are influenced by other
vehicles. Naturally, the more independent a driver is, the higher
the possible benefit of GLOSA systems as driving strategies
can then be chosen freely.

In the free flow subcategory (1), drivers can move freely
within legal boundaries without being influenced by nearby
vehicles. With increasing traffic density (semi-free flow, sub-
category 2) drivers cannot always choose driving strategies
arbitrarily as they are sometimes blocked by vehicles in front
of them. This freedom is further decreased in the synchronized
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flow subcategory (3) where acceleration or deceleration deci-
sions almost always depend on other vehicles and in general
only a low average velocity can be reached. On congested
roads (subcategory 4) the movement of a vehicle entirely
depends on the vehicles around it; in these cases individual
driving strategies cannot offer a benefit due to the lack of space
caused by the high volume of traffic. We therefore decided to
select four traffic densities (annotated with Ia, Ib, II, and III in
Figure 5) from the first three subcategories in order to evaluate
benefits and side-effects of GLOSA systems.

Finding a suitable map for the performance evaluation is
a critical task. The preferable solution would be to take real
map data and convert it to be used in simulation [23]. However,
intersections are often not converted properly and traffic light
program information is missing or even wrong. We therefore
decided to build a synthetic scenario with basing as many
parameters as possible on map data taken from Munich, as
shown in Figure 6. A total of 8 vertical and 38 horizontal
roads with a speed-limit of 50 km/h cover an area of about
5.6 km × 1.6 km. A typical traffic light cycle in the selected
area has a length of 70 s with a 40 s red phase. In the select area
the percentage of unregulated intersection is approx. 82 %. The
regulated intersections, however, are substantially busier than
the unregulated ones. It was shown that in general about 20 %
of all intersections control 80 % of traffic [24]. To account
for this effect with uniformly distributed traffic, we equipped
80 % of all intersections with traffic lights in the simulation.

Results for potential fuel saving and CO2 reduction heav-
ily depend on the used emission models. We extended the
EMIT emission model [25] to account for emissions during
stopping for start-stop system enabled vehicles, freewheeling,
and coasting. To analyse the absolute potential of traffic light
assistance systems we did not model unequipped vehicles to
be freewheeling or coasting as they were not informed about
traffic light programs. We used three different types of vehicles
and drivers to further increase the realism of our simulation:
a cautious driver, a normal driver, and a sporty driver. Exact
CO2 emissions and physical parameters of the used vehicles
were taken from real vehicles namely the VW Polo IV 1.4,
the BMW F10 535i and the BMW E71 X6 M.

Table I gives an overview of all simulation parameters, their
meanings, and their values.

B. CO2 Emissions and Fuel Consumption

In a first step we investigated to what extent CO2 emissions
(proportional to fuel consumption) could be reduced in the
whole network, not distinguishing between equipped and un-
equipped vehicles. Figure 7a and Figure 7b show our findings
when altering the traffic light equipment rate σ or the vehicle
equipment rate ρ respectively. As can be seen, both figures
look very similar, showing that increasing either the vehicle
equipment rate or the traffic light equipment rate has almost
the same effect. This is an important finding as it indicates that
both equipment strategies are valid approaches in decreasing
CO2 emission rates. A high ρ with a low σ leads to a low
number of traffic lights whereas a high number of vehicles
can potentially lower their emission rates, while in the inverse
scenario a small number of vehicles can benefit from a high
number of communicating traffic lights.

The figures clearly show that the benefit is considerably
higher (up to 12 % fuel saving/emission reduction) at lower
traffic densities (Ia and Ib, cf. Figure 5). The main reason
for this is that in light traffic, vehicles can move more freely
and do not interact with each other as often. Increasing the

1Image of Munich © OpenStreetMap www.openstreetmap.org/copyright



0 20 40 60 80 100

0

2

4

6

8

10

12

traffic light equipment rate σ [%]

C
O

2
 r

ed
u

ct
io

n
 [

%
]

D =  Ia

D =  Ib

D =  II

D =  III

(a) Total CO2 reduction for a fixed vehicle equipment rate ρ = 100%
over different traffic densities

0 20 40 60 80 100

0

2

4

6

8

10

12

vehicle equipment rate ρ [%]

C
O

2
 r

ed
u

ct
io

n
 [

%
]

D =  Ia

D =  Ib

D =  II

D =  III

(b) Total CO2 reduction for a fixed traffic light equipment rate σ =
100% over different traffic densities

0 20 40 60 80 100

−5

−4

−3

−2

−1

0

1

vehicle equipment rate ρ [%]

C
O

2
 r

ed
u

ct
io

n
 [

%
]

D =  Ia

D =  Ib

D =  II

D =  III
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Figure 7. CO2 Reduction compared to a transportation system with no
intelligent traffic lights

traffic density (II and III) directly leads to a lower benefit.
Vehicles are affecting each other and the choice of driving
strategies becomes more limited due to the now crowded
streets and uninformed drivers blocking traffic lights. However,
the positive effect of the system still increases linearly with

the amount of equipped devices. Figure 7c shows that the
overall reduction of CO2 emissions is almost solely caused
by equipped vehicles. Interestingly, unequipped vehicles can
also marginally benefit at lower traffic densities as they are at
times forced to drive behind an equipped vehicle and thereby
sometimes avoid stopping at a red light. Note however, that
unequipped vehicles were not modeled to be freewheeling or
coasting and a lower CO2 value for them is only caused by
fewer acceleration and deceleration cycles. At higher traffic
densities we observed a negative effect for unequipped ve-
hicles, mainly caused by longer travel times, which will be
discussed later on.

For the first time we were able to show that earlier findings
for simpler scenarios (one vehicle, one intersection) [5], [6]
can indeed be generalized under optimal conditions (low traffic
density, fully equipped vehicles and traffic lights, and the use
of a nearly optimal driving strategy). However, scenarios with
higher traffic densities or lower equipment rates show that
especially the interaction of non-informed drivers with their
informed counterparts can have negative side-effects.

C. Waiting Time and Stop Count

Traffic light assistance systems are not only envisioned to
be beneficial for the environment but to also serve as a comfort
system for the driver by reducing the number of unnecessary
stops at red lights or to decrease waiting times at traffic lights
in general.

We investigated the effects on waiting times for both
equipped and unequipped vehicles (Figure 8). As can be seen
in Figure 8a the benefit for equipped vehicles is not dependent
on the overall number of equipped vehicles at low traffic
densities. Independent of the equipment rate, informed drivers
could benefit from a reduction of waiting time of about 15 %.
The slow increase with rising traffic density can be explained
by unequipped cars blocking a traffic light because of their
suboptimal approach, forcing an equipped vehicle to also stop.

For higher traffic densities we observed a different situation:
When more vehicles used the traffic light assistance system,
the benefit for the driver became less and less, eventually even
resulting in longer waiting times. The reason for this is a
suboptimal road utilization. When a traffic light turns green,
assisted drivers might not fully accelerate (in order to pass
the next traffic light without stopping), leading to a smaller
number of vehicles to be able to pass the traffic light. This
notably increases congestion at traffic lights and thereby the
waiting time for all vehicles.

When looking at uninformed drivers (Figure 8b) we no-
ticed that they could reduce their waiting time by a small
percentage when forced to drive behind equipped vehicles in
the low traffic density scenarios, but were also affected by
the before mentioned problem of suboptimal road utilization.
Stuck in traffic jams caused by slowly accelerating equipped
vehicles, their waiting time increased in the higher traffic
density settings, giving strong indication that naively following
the optimal driving strategy for the own vehicle can have
disadvantages for others. Our algorithm does not advise drivers
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Figure 8. Waiting Time Reduction in front of equipped traffic lights, shown for unequipped and equipped vehicles at a fixed traffic light equipment rate
σ = 100% over different traffic densities
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Figure 9. Total reduction of stops for all vehicles at a fixed traffic light
equipment rate σ of 100 %

to pass an amber traffic light, causing unequipped vehicles that
would otherwise pass the traffic light to also stop when driving
behind an equipped vehicle.

We furthermore examined the number of stops vehicles had
to make in front of equipped traffic lights and observed a
linearly increasing benefit at low traffic densities (cf. Figure 9).
With only a few equipped vehicles at the medium traffic
density (II) we noticed a better performance caused by ben-
eficial interaction of equipped vehicles with their unequipped
counterparts. However, when the number of equipped vehicles
increases the mentioned negative effects could be observed
again, resulting in a lesser benefit, and even a negative impact
for the highest simulated traffic density, where vehicles had
stop multiples times in front of the same traffic light.

D. Travel Time

In general, we did not expect a reduced travel time for
equipped or unequipped vehicles. The reduction of travel time
caused by a vehicle passing a traffic light without having to
stop is immediately canceled by the fact that our algorithm
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Figure 10. Travel Time at low and high traffic density, shown for equipped
and unequipped vehicles

did not advise (and therefore disallow in our simulation)
informed drivers to pass amber traffic lights. This can be
seen in Figure 10 where we already noticed an increase of
travel time at traffic density Ia. Unequipped vehicles were not
affected by this, as interaction was minimal in this scenario. At
the highest simulated traffic density we observed considerably
longer travel times, not only directly caused by longer traffic
jams at traffic lights but also by the resulting effect on other
intersections: if the jam becomes long enough to block such
an intersection, vehicles on the intersecting road are unable to
cross or turn, forcing them to wait until the jam is resolved.

VI. CONCLUSION

Green Light Optimal Speed Advisory (GLOSA) systems are
envisioned to be not only environmental friendly by reducing
CO2 emissions and fuel consumption but also to serve as a
comfort system that is able to reduce waiting times and the
number of stops at traffic lights.

In this work we investigated the benefits of inform-
ing approaching vehicles about traffic light programs. Our



performance study showed that at low traffic densities
(≤ approx. 20 vehicles/km) all these goals could be reached.
CO2 emissions and fuel consumption could be reduced by up
to 11.5 % in an ideal scenario, waiting times even by about
17 % and the amount of stops could be lowered by ≈ 6 %.
We found that these benefits grow linearly with the number
of equipped traffic lights or vehicles (or both).

However, with denser traffic the performance of such a
system deteriorates. Vehicles affected by other vehicles can no
longer choose an optimal driving strategy. In our simulation we
could observe that self-serving drivers cause road utilization to
become suboptimal, considerably contributing to the forming
of traffic jams. The resulting congestions not only lead to
higher CO2 emissions for unequipped vehicles but also to
longer waiting and travel times and more frequent stops for
all vehicles in the scenario.

To solve this problem future work includes the investigation
of more advanced approaches that account for surrounding
traffic and traffic lights further ahead.
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