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ABSTRACT

The switch from gasoline-powered vehicles to electric ve-
hicles (EVs) is an important step to reduce greenhouse gas
emissions. To this end, many European countries announced
EV stock targets, e.g., Germany aims to have one million
EVs on the roads by 2020. To achieve these goals and to han-
dle the range limitation of EVs, a widespread publicly acces-
sible charging infrastructure is needed. This paper provides
a dynamic spatial and temporal simulation model for the
building of charging infrastructure on a municipality scale.
We evaluate empirical data about the timely utilization of
different charging stations in the German federal state of
Bavaria. This data is used to derive empirical models for
the start time and duration of charging events as well as the
popularity of charging stations. We develop a lightweight
discrete event simulation model which can be used to inves-
tigate different expansion strategies, e.g., based on the load
of charging stations or the number of successful and failed
charging attempts. We show the applicability of our model
using the German federal state of Bavaria as a use case.
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1. INTRODUCTION

According to the Global EV Outlook 2016 [1] fourteen
countries have announced EV stock targets, aiming to bring
thirteen million EVs on the road in the near future. For
instance, the German government aims to have one million
EVs on German roads by the end of 2020. One major chal-
lenge for achieving these numbers is overcoming the main
disadvantage of EVs, namely their limited range of approx-
imately 150 km [8]. One way to mitigate this shortcoming
is to provide a widespread, publicly accessible charging in-
frastructure.
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According to the Progress Report and Recommendations
of Charging Infrastructure for Electric Vehicles in Germany
2015 [7], there will be a need of about 16,000 charging sta-
tions by 2020. In more details, 5,700 additional fast charging
points and 10,000 normal AC charging stations (meaning
20,000 additional normal charging points) will be needed
until 2020. In the federal state of Bavaria alone (consist-
ing of 71 administrative districts and 25 independent cities)
there are plans to build as many as 7,000 publicly accessi-
ble charging stations [2]. There exist various programs to
meet these requirements [7], however, at this point it is un-
clear where and when new charging stations should be built.
Stakeholders and decision makers could benefit from reliable
predictions based on detailed statistics about the utilization
of today’s charging infrastructure.

In order to provide such predictions and recommenda-
tions, we develop a novel methodology for charging infras-
tructure planning using empirical data and discrete event
simulation.! We evaluate the available empirical data in-
cluding charging information about 394 charging stations in
Bavaria over a four month period. This information is used
to describe charging events with regard to their start time
and duration. Under the additional consideration of an ex-
ponential growth of EVs until the end of 2020, we model the
increasing number of charging events on publicly accessible
charging stations. We define different output parameters
such as the probability of successful charging attempts, the
utilization of a charging station, as well as a theoretical wait-
ing time in order to assess different scenarios regarding the
expansion of charging infrastructure. Given different expan-
sion strategies, we derive a spatial and temporal expansion
schedule for each subregion in the federal state.

The remainder of the paper is organized as follows. In
Section 2 we give an overview of related work in the field
of charging infrastructure planning. We explain our system
model in Section 3, followed by Section 4 where we describe
the developed methodology, input modeling and the imple-
mentation of our discrete event simulation model. In Section
5 we present results for the use case study carried out us-
ing data for the federal state of Bavaria. Section 6 provides
a discussion about our model and Section 7 concludes the
paper with a short summary and an outlook on future work.

'The empirical data was provided by CIRRANTIC GmbH,
a company which provides enhanced data streams to users
and information management tools for EV infrastructure.



2. RELATED WORK

There exist several publications on charging infrastruc-
ture planning on an abstract level. For instance, Germany’s
report on Charging Infrastructure for Electric Vehicles [7]
provides an overview of the current status of Germany’s
charging infrastructure. The authors mentioned that the ex-
pansion in normal charging infrastructure has been slowing
since 2012 due to poor cost-efficiency, whereas the ramp-up
of EVs is much more pronounced. Nevertheless, it is impor-
tant that the number of publicly accessible charging stations
grows with the number of EVs on German roads. This fact
is also mentioned in a position paper by the Bavarian state
government and Bavarian car manufacturers [2]. Although
in Germany’s report at least a rough schedule for expansion
in charging infrastructure is given, only the Bavarian posi-
tion paper provides a hard target number of 7,000 in total.
Detailed schedules and spatial distributions of the presented
total number of charging stations is not available. This is a
major concern for stakeholders and infrastructure planners
since they don’t know where and when the expansion of new
charging stations is necessary.

Literature pertaining to charging infrastructure planning
relevant to the subject of this paper is also focused on spatial
and temporal distribution.

Wirges [11] developed detailed models for charging infras-
tructure planning. He refines the planning not only for re-
gions but also for the street level and presented different
application areas of his model. In a second step, he devel-
oped a simulation model for the long-term development (un-
til 2020) of charging infrastructure based on the increasing
number of EVs, calculated quotas of charging points per EV
and also inter-municipal commuter data for the German city
of Stuttgart. His simulation results showed that only 1.2 %
of all charging points were public charging points. Brost et
al. [3] developed a site selection model for electric charging
infrastructure based on origin-and-destination traffic gener-
ation, different user groups, and their trip behavior. Further
input parameters include the zone-specific points of interest
(POI) and information with regard to the duration of stay.
Based on a vehicle ownership model and current charging
infrastructure, the number of possible charging cycles can
be determined. The results can be used by local planners
to make micro-location plans for expansion of the charging
infrastructure. Both publications have in common that they
don’t use empirical data for the modeling of charging events.

In Bi et al. [9] the authors developed an optimal charging
station deployment model under the consideration of differ-
ent charging behavior. To this end, they used an agent-
based sub-microscopic city-scale traffic simulation which al-
lows the investigation of different charging behavior under
the assumption that charging stations are placed at exist-
ing gas stations. Results show that charging behavior has
an influence on the charging infrastructure of the city-state
Singapore. However, a charging infrastructure plan from a
temporal perspective is not given.

Authors of [10] investigate where the state of charge would
reach a critical level and, from that, they infer candidate lo-
cations for charging stations. They also took into account
parking lots and driving behavior. The optimal placement of
charging stations is also addressed in Lam et al. [5]. They
define an optimization problem by finding the best loca-
tions to construct charging stations in a city by solving the
EV charging station placement problem. The authors are
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Figure 1: Scale of simulation: map of Bavaria, Germany
with municipality borders.

focused on the complexity of these kinds of problems and
propose four different solution methods. A temporal plan of
charging stations placement is not given in detail.

There also exist several publications investigating the ef-
fect of electromobility on the power grid. In Dharmakeerthi
et al. [4] the authors applied a particle swarm optimization-
based approach for the planning of EV infrastructure on
a distribution feeder level. They suggest to promote pub-
lic charging stations in order to reduce electricity network
upgrade requirements to accommodate EV charging on low
voltage networks.

The idea of this work is to present a lightweight discrete
event simulation model for the spatial and temporal charging
infrastructure planning based on empirical data about the
utilization of the existing charging infrastructure and the
ramp-up of EVs as an input. Our model allows to derive
detailed spatial and temporal expansion plans for different
regions. The applicability of our model is shown for the
German federal state of Bavaria. However, our approach
can be applied to any other region worldwide as long as
sufficient input data is available.

3. SYSTEM MODEL

The goal of the simulation is to give spatial and temporal
recommendations for the building of charging infrastructure
on the municipality scale. Figure 1 provides a visual refer-
ence for the scale of the simulation. It shows the German
federal state of Bavaria with municipality borders. In total,
Bavaria is divided in 96 municipalities. The outcome of the
simulation is a recommendation for when to build charging
stations at a temporal resolution of one week and a spatial
resolution on the municipality level.

To achieve this, we have to make several assumptions.
First, we want to abstract away from microscopic driver
models, charging behavior, and mobility altogether by uti-
lizing empirical data collected by today’s charging stations.
Creating realistic microscopic traffic demand, traffic assign-
ments, and psychological driver models, combined with spe-
cific local features of the vicinity of a charging station is



infeasible at the scale of a federal state spanning more than
70,000 km?. By utilizing existing real-world charging data,
we bypass the necessity for these complex and possibly inac-
curate models, as the empirical data already inherently in-
cludes the results that would be obtained using these models.
The empirical data used in this study includes the number of
electric vehicles per municipality, the number and location
of charging stations, as well as detailed information about
charging events in the federal state of Bavaria. We define a
charging event as the triple of the charging station, the start
time, and the charging duration.

From the empirical distribution of charging events, we de-
rive charging events in the simulation. This means we do
not model state of charge and trip distances, we assume
that all charging events are of opportunistic nature, that
is, if a charging station is occupied, the driver will not wait.
Each charging station is assumed to have two outlets. As the
charging duration is derived from real-world data, we do not
model charging speeds. We assume that the charging sta-
tions about which we do not have empirical data behave the
same as the ones we do have data about. This means that
we assume charging stations about which we have data to be
representative. With communication capabilities added to
more and more charging stations, this assumption naturally
becomes less critical.

For the building of new charging stations, we assume that
charging stations can be built instantly. We do not consider
the profitability of publicly accessible charging stations, nor
do we assume that there will be a different distribution of
charging station popularity after new ones are added. This
is done to keep our model lightweight and to avoid unjus-
tified assumptions. We also do not consider restrictions re-
garding the underlying power system. The main reason for
this is that we do not recommend the exact position where
the stations should be built. Such recommendations would
naturally have to consider the power grid.

As for the scenario, we assume that a total number of
200,000 electric vehicles in Bavaria will be reached by the
end of 2020. We assume the distribution of electric vehicles
among the different municipalities to be the same over the
simulation time.

4. METHODOLOGY

In this section we describe the applied methodology. First,
we present the modeling of input parameters, including the
progress of the number of EVs over time and the imple-
mented expansion strategies for charging infrastructure. Sub-
sequently, we briefly discuss the development of the discrete
event simulation model.

An overview of our simulation is given in Figure 2. A large
part of the input consists of empirical data that has to be
processed and prepared to be used in the simulation environ-
ment. Additionally, we define different expansion strategies
for the building of charging infrastructure.

In order to account for incomplete and missing data, we
make use of the empirical distribution of the input data.
Based on this, the discrete event simulation will derive charg-
ing events (start time and duration in the resolution of min-
utes), add infrastructure on a weekly basis, and also gradu-
ally increase the numbers of electric vehicles in the system.
Based on the success rate, the load of the charging stations,
and the expansion strategy, we can then give recommenda-
tions for the building of charging infrastructure.
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Figure 2: Inputs and outputs of the developed simulation
engine.

4.1 Input Modeling
4.1.1 Regions

Input data for each municipality in the federal state of
Bavaria includes the number of electric vehicles, the pop-
ulation, the area size, and the type of municipality (e.g.,
city, town, rural, etc.). For some of the investigated ar-
eas, there was no available information about the number
of charging events. Developing a linear model, based on
population, area size, and number of EVs to determine the
number of daily charging events per region was not possi-
ble (R? ~ 0.5). We conclude that at this rather early stage
of electric vehicle market introduction, local characteristics
of municipalities (e.g., the presence of a car manufacturer)
have a higher impact on the EV market share of a region,
making the number of daily charging events hard to pre-
dict. We therefore decided to apply hierarchical clustering,
and arrived at 15 different clusters for the 96 municipalities.
We validated the clustering result by again applying a linear
model to determine the cluster for each region and arrived
at an R? value of 0.9 and higher. This means that some
regions have common characteristics in terms of EVs, popu-
lation and daily charging events. Others, even though they
are the same type of municipality, are considerably different.
We assume that regions belonging to the same cluster will
share common characteristics in terms of charging events, al-
lowing us to also model regions where only limited empirical
data is available.
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Figure 3: Development of the number of EVs in Bavaria
from 2011 to 2021.

4.1.2 Modeling the Number of EVs

As the German government aims to have one million EVs
on the road by the end of 2020 [1], we derive that, based on
today’s share of vehicles, Bavaria will have approximately
200,000 EVs. Under consideration of the historical number
of EV registrations from 2011 to 2015, we fit an exponential
increase for EVs (see also [6]). The fit is depicted in Figure
3 and given by the function

EV(t) = 6,027 - exp (0.3502 - (t — 2012)), (1)

wherein year t > 2012. In order to distribute the num-
ber of EVs across different regions (administrative districts
and independent cities) in Bavaria, we use official statistics
of vehicle registration authorities and derive a distribution
factor 3; € (0, 1) for each region 7. The development of EVs
in region ¢ is given by

EVi(t) = i - EV(1). (2)

Thereby, we assume that the share of EVs within each
region with regard to the total number of EVs to be constant
over the next years.

4.1.3 Modeling of Charging Stations

As of today, there exist approximately 1,250 charging sta-
tions in Bavaria, however, only 394 of them have a back-end
connection that allows to collect statistics. These charging
stations store information about each charging event, that
is, the start time and the duration. For each region we de-
rived the following information for a period of four months:

e Histogram over start times of charging events in a fif-
teen minute resolution

e Histogram over duration of charging events in a fifteen
minute resolution

e Histogram over popularity of charging stations

An example histogram over the start time of charging
events is shown in Figure 4a for a small city in Bavaria. We
observed similar features for almost all charging stations. It
can be seen that most of the charging events on publicly
accessible charging stations take place between 08:00 and
18:30. The peak at about 17:00 can be explained as this is
a common time to finish work in Germany.

In Figure 4b the histogram for the duration of charging
events is given. Most of the charging events last between
fifteen and ninety minutes, mainly caused by people charg-

ing their vehicle while shopping. Longer charging durations
could be observed at long-term parking lots and locations
where people change to public transport. We also observe
that vehicles occupying a charging station for over 24 hours
is not uncommon.

Figure 5 depicts an example histogram for the popular-
ity of charging stations, showing that two charging stations
are considerably more popular than the remaining eleven.
These two stations experience more charging events than
the rest of the back-end stations in this municipality com-
bined. This is similar to what we observed for many re-
gions, meaning there is no gradually decreasing popularity
but rather only two types of charging stations: popular and
considerably less popular. In this example, the number of
charging stations with a back-end connection was 13, the
overall number of stations in this region, however, was 38.
Assuming the missing charging stations behave similar to
the ones with a back-end connection, we add them based
on the existing popularity distribution. This is a strong as-
sumption, especially when the number of back-end charging
stations is low. We make equal-probability random selec-
tions between charging stations with back-end connection
(cf. charging station ID in Figure 5), multiply the given
number of charging events with a Gaussian distributed pa-
rameter (u = 0,0 = 0.15), and add the new charging station
to the histogram. Figure 5a shows the histogram over the
popularity of charging stations after the expansion of the
original histogram to the total number of charging stations
within this region.

4.1.4 Number of daily charging events

From the total number of charging events in a certain re-
gion i, we derive the mean number of daily charging events
gi)C’Eiday by dividing the total number of charging events by
the number of days within the four month period. In order
to determine the number of daily charging events within a
certain region we have also to consider charging events that
occurred on charging stations without back-end connection.
We assume the same utilization of charging stations without
back-end connection using the ratio between charging sta-
tion in total C'S!**! and with back-end connection C'SE°™®.
The utilization depends also on the number of EVs, mean-
ing we also take into account the ratio of the number of EVs
at the simulation start time E'V;(0) and the number of EVs
EV;(t) at time ¢.

For a certain region i the number of daily charging events
CE;(t) is given by

Cszq;otal . E‘/»L(t) (3)
cSeonn T EV,(0)

CE;(t) = gCE™ -

As in the real world the number of daily charging events is
not a deterministic number we also consider stochastic influ-
ences modeled by a Gaussian distributed parameter a (u =
0,0 = 0.15). Thus, further influences such as holidays,
seasons or special events (e.g., sporting events) can be de-
scribed. We acknowledge that, ideally, this should be de-
rived from the empirical data as well, however, the low sam-
ple size of charging events for public holidays and other spe-
cial occasions did not allow us to draw conclusions.

The modeled number of daily charging events is given by

CEi(t) = (1+a) - CEi(1). (4)
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Figure 4: Example charging events recorded for a small town.
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(b) Example histogram of popularity of charging stations
including charging stations without internet connection.

Figure 5: Empirical and synthetic charging station popularity for a small city.

4.1.5 Expansion strategies for charging infrastruc-
ture

The Bavarian state government aims to have up to 7,000
publicly accessible charging stations installed by the end of
2020. For the expansion of charging infrastructure we con-
sider two different expansion strategies: Success and Target.
In the simulation, the decision to build new charging stations
is made on a weekly basis. In order to catch up with the
exponential growth of EVs and the fast increasing charging
station demand, we double the number of newly built charg-
ing stations per region if this region was already selected for
expansion in the previous week.

The first expansion strategy, denoted as Success, is based
on the percentage of successful charging events (cf. Equation
5). We treat every region in Bavaria as stand-alone, mean-
ing that the number of new charging stations is independent
from the number of new charging stations in another region.
If the percentage of successful charging events drops under
a threshold 7 (e.g., under 0.95), then new charging stations
will be constructed in this region. The overall number of
built stations in the scenario then solely depends on 7, i.e.,
no upper bound for the number of new charging stations is
considered. In Algorithm 1 the principal idea of this expan-
sion strategy is shown. When a new station is added to a

region, its popularity will be determined in the same manner
as non-back-end stations are added (cf. Subsection 4.1.3).

The second expansion strategy, denoted as Target, as-
sumes that the number of charging stations should also grow
exponentially to serve the exponentially growing number of
EVs (cf. Figure 3). Based on this function, we determine the
number of available charging stations per week. Compared
to the Success strategy, Target is more of a centralized ap-
proach, meaning that there is a total weekly limit of charging
stations which can be built. To this end, we sort all regions
within the simulated area by the percentage of successful
charging events in an ascending order. Then we add charg-
ing stations until all available stations have been assigned
a region. To catch up with increasing demand, the number
of newly built charging stations is doubled for regions that
already experienced an expansion in the week before. The
working principle of Target is given in Algorithm 2

The main difference between the two expansion strategies
lies within what they try to achieve. Success gives infor-
mation about how many charging stations are required to
achieve a certain success probability, whereas Target dis-
tributes a predetermined number of charging stations in a
manner so that the average success probability between re-
gions is maximized.



Algorithm 1: Success expansion strategy.

Algorithm 2: Target expansion strategy.

1 Definitions:
2t The current week
3 p;*°°(t) The percentage of successful charging attempts
4 in region ¢ during week ¢
5 new,;(t) The number of stations to be built
6 in region ¢ in week ¢
7T The threshold for the construction of new
8 stations
9 foreach region i do
10 if (pi*°(t — 1) < 7) then
11 | new;(t) = 2newitt—)
12 else
13 | new;(t) =0
14 end
15 Build new;(¢) charging stations in region %
16 end

4.2 Simulation Model

The simulations were conducted using the discrete-event
simulator OMNeT++, a component-based C++ simulation
library and framework. It provided the event scheduling
engine and the required statistical tools.

4.2.1 Description of a single charging event

The exponential growth of EVs combined with the in-
put distributions based on the empirical data determines
the number of charging events per day per region. For each
region, the simulation maintains three distributions, i.e, one
over the start times, one for the charging durations, and one
for the popularity of stations.

The simulation will schedule an event every day at 0:00 to
determine the charging events for the next day. Based/og the
three stored distributions per region, we draw n = 3-CFE;(t)
random numbers. Each triple of start time, duration, and
charging station describe a charging event. The events are
sorted by start time and processed one by one to determine
whether a charging attempt was successful. If there is an
outlet available at the randomly determined charging sta-
tion, then this outlet is set to occupied for the duration.
The charging event is set to successful. Should there be
no available outlet for a charging event, then we define this
charging event to be failed.

For an example region of Bavaria an excerpt of an event
list sorted in chronological order regarding starting times is
given in Table 1. It can be seen that most of the charging
events are successful. However, charging events 11 and 14
failed because both outlets of the target charging stations
were already occupied by earlier events.

4.2.2  Output measures

Simulating at charging event level allows us to derive vari-
ous output measures to assess the overall performance of the
charging infrastructure. Let #CE"*°*s™ be the number of
all successful charging events, and #C E**! the total num-
ber of all events, then the overall success probability p*"°°(t)
can be given as:

cuce B #CEsuccessful(t)
p(t) = 0N (5)

Definitions:

t The current week

CS(t) Number of charging stations that can be built
in week t based on exponential growth function

p;°(t) The percentage of successful charging attempts
in region ¢ during week ¢

new;(t) The number of stations to be built
in region ¢ in week ¢

sort all regions 4 into stack L according to pi"“°(t)

var avail = CS(t)

while (avail > 0) do

// Region with lowest success probability is
on top of stack

12 i = pop L

13 | new;(t) = 2nevit=D

H OO 0NO0Uk WNHF

[

14 Build min(avail,new;(t)) charging stations in region
i

15 avail = avail — new;(t)

16 end

This probability can be computed for every time window
and for each region by only considering the respective charg-
ing events.

From an economic perspective, the load of a charging sta-
tion might be the decisive factor for profitable operation.
Let CE(t) be the charging events in a given time interval ¢
and #CS(t) the overall number of charging stations (each
with 2 outlets) in this interval, then the overall system load
can be computed as:

duration of e
Load(t) = ZEECE,“) (6)
total time - #CS(t) - 2
Again, statistics for single regions or single charging sta-
tions can be computed by only considering the respective
subset of CE(t).

Table 1: Excerpt of an event list of charging events for a cer-
tain region (sorted in chronological order regarding starting
times).

ID Start Duration Char. Outlet Status
[hh:mm] in [hh:mm] Station

1 14:35 01:25 1 1 successf.
2 14:55 00:23 3 2 successf.
3 15:23 00:59 7 1 successf.
4 15:33 04:20 6 1 successf.
5 15:39 02:35 5 2 successf.
6 15:55 01:15 1 2 successf.
7 16:03 01:08 16 2 successf.
8 16:11 03:25 2 1 successf.
9 16:25 00:28 1 1 successf.
10 16:34 00:33 6 2 successf.
11 16:39 02:11 1 1 failed

12 16:47 00:48 2 2 successf.
13 17:08 00:59 4 1 successf.
14 17:11 14:15 2 1 failed
15 17:27 04:25 3 2 successf.



Load and success probability give an indication of how
well the charging infrastructure operates. As a last output
measure, we propose the theoretical waiting time, that is,
the duration a driver would have to wait until one outlet of
the charging station becomes available. For this, we assume
that each vehicle will queue in front of the charging station,
regardless of queue length, time of day, and charging dura-
tion of vehicles in front. This output measure is purely theo-
retical, however, it will react more sensitively to a mismatch
between supply and demand as waiting times will quickly
grow. The average theoretical waiting time ¢wait(t) is sim-
ply the waiting time of all individual charging events nor-
malized by the number of charging stations #CS(t) (each
with 2 outlets) for a given time interval ¢.

> cecm( Wait time of e
#CS(t) -2

pwait(t) = (7)

S. RESULTS

In this section we present example simulation results as a
demonstration of the capabilities of our simulation model.
We simulated the federal state of Bavaria from 2016-01-01
to 2020-12-31.

We analyzed three different expansion scenarios: The first
one is a scenario where no new publicly accessible charging
stations are built (denoted as No Ezpansion). This serves as
a benchmark in order to understand the effect of a growing
number of EVs on today’s charging infrastructure. We addi-
tionally simulated the Success and Target expansion strate-
gies (see Section 4.2). The threshold 7 for Success was set
to 0.95. For the Target strategy, we assume a target number
of 7,000 charging stations for the entire federal state.

Due to the variety of regions (71 administrative districts
and 25 independent cities) it is not possible to show results
for every single municipality. As an example, we choose a
small independent city in Bavaria and present different re-
sults including the number of daily charging events, percent-
age of successful charging events, the mean load of charging
station, the theoretical waiting time, and finally the expan-
sion of charging stations until the end of 2020.

Figure 6 shows the number of daily charging events for
the entire simulation period. As expected, an exponentially
increasing number of EVs leads to an exponentially growing
number of charging events (cf. Equation 3). The variations
originate from the applied Gaussian noise.

In Figure 7 the percentage of successful charging events
according to Equation 5 is depicted. In the No Ezpansion
scenario it can be observed that the percentage of successful
charging events declines from 95 % in 2016 to approximately
55 %. Hence, this scenario is useful to see the consequences
when no new charging stations are built.

The Success strategy (blue line) was able to successfully
ensure a 95 % success rate, showing only minor fluctuations
around the fixed threshold 7 throughout the entire observa-
tion period. For the Target expansion strategy (red line),
the success rate drops under 90 % between the years 2017
and 2018. This is a direct effect from the competition of the
city with other regions within Bavaria regarding the allo-
cation of charging infrastructure. In this period there were
other regions with a lower percentage of successful charging
events, receiving priority for newly built charging stations.
These are mainly regions that already today do not have a
sufficient number of charging stations. Once enough charg-
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Figure 6: Number of daily charging events until 2020 for a
small independent city in Bavaria.
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Figure 7: Percentage of successful charging events from 2016
to 2021 for a small independent city in Bavaria.

ing stations are deployed in these regions (after 2018), the
success percentage for the presented city approximates 95 %.

Investigating the mean load of charging stations (Figure
8), we observe that the high success probabilities achieved
using the Success and Target strategies come at the price
of mostly idle charging stations. In both scenarios (red and
blue lines), the average load of charging stations did not
exceed 20 %, arriving at values as low as 10 % at the end of
2020. Even without building new infrastructure (black line),
the load did not exceed 40 %. This is caused by low demand
after work until the next day, further affected by standard
trading hours in Bavaria (06:00 - 20:00) (cf. Figure 4a).
From an operator perspective, it might be more logical to
achieve a higher average load rather than high success rates.
Our model design also allows to define expansion strategies
with regard to the mean load of charging stations to arrive
at a more economical expansion plan.

The average theoretical waiting time is depicted in Fig-
ure 9. Without building new charging stations, the theo-
retic waiting time grows exponentially. For instance, in the
end of 2020 the theoretical waiting time amounts to over
50.000 minutes per charging attempt, which is more than 34
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Figure 8: Mean load of charging stations from 2016 to 2021
for a small independent city in Bavaria.
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Figure 9: Average theoretical waiting time from 2016 to
2021 for a small independent city in Bavaria (y axis is in log
scale).

days. Consequently, a significant mismatch between supply
and demand is identified. The Success strategy contributes
to keep the theoretical waiting time on a constant level of
approximately 40 minutes. In the Target strategy, the the-
oretical waiting time increases to approximately two hours
until mid 2017. After that, we observe an average theoretical
waiting time of approx. 40 minutes.

The core output of our simulation is the spatial and tem-
poral charging infrastructure plan, i.e. for a certain region
we obtain a temporal expansion plan for building charging
stations. Figure 10 shows the expansion of charging stations
in a weekly resolution. For both the Success and Target sce-
narios, we observe that the building of only one charging
station per week is not sufficient to catch up with the grow-
ing demand of electric vehicles. At some times, it was neces-
sary to build the double, fourfold, or eightfold etc. number
of charging stations in the subsequent week (cf. blue line at
2018 or red line at 2020 in Figure 10). Both strategies co-
incidentally arrive at a similar number of charging stations
by the end of 2020, however, the building schedule strongly
differs. Please note, that different values for = would lead
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Figure 10: Temporal construction of charging stations from
2016 to 2021 for a small independent city in Bavaria.

to a different number of charging stations. The centralized
Target strategy prioritized other under-supplied regions, de-
laying the beginning of building new stations until mid 2017.
This delay leads to a steeper increase compared to the Suc-
cess strategy where charging stations are added right from
the beginning.

6. DISCUSSION

The presented simulation model is mostly of empirical na-
ture and intended to assist stakeholders and policy makers in
planning the building of charging infrastructure. The most
challenging part for such a model is validation. Unfortu-
nately, the data needed for validation is not yet available
as electromobility and statistical data collection of charging
stations is a rather new domain. Therefore we did not at-
tempt to model charging behavior of individual vehicles, but
assume that the utilization of today’s charging stations is a
direct result from a complex set of parameters that, without
large amounts of data, it is not possible to model. By stick-
ing closely to the distributions of the empirical input data,
we abstract away from these parameters.

To achieve at least some level of validation, all models
and results were discussed with domain experts. According
to these experts the current differences in the utilization of
charging stations located in independent cities and adminis-
trative districts are represented adequately by the provided
empirical data.

The sparseness of data also required us to make various
assumptions (see Section 3). The way the input data is used,
however, allows the simulation to scale with the data quality
of the input. The more information about charging stations
and charging events is available, the more accurate we as-
sume the predictions will become. We therefore recommend
to iteratively use this modeling approach as soon as higher
quality input data is available.

7. CONCLUSIONS

EVs contribute to more sustainable future transportation
systems. In order to meet the announced EV targets, a sig-
nificant number of publicly accessible charging stations is
required. Therefore, many countries worldwide define ex-



pansion targets for charging stations. However, determining
when and where new charging stations should be built is a
challenging task.

In this paper we addressed this issue and developed a spa-
tial and temporal charging infrastructure planning tool using
discrete event simulation. Based on comprehensive analy-
sis of empirical data about the utilization of charging sta-
tions, we derived models for the starting time and duration
of charging events. Our simulation model allows to evaluate
different expansion strategies with regard to various output
metrics such as the likelihood of charging attempts to be
successful, the average load of charging stations, and the
theoretical waiting time, a measure that quickly reacts to a
mismatch between supply and demand. As a proof of con-
cept, we demonstrate the capabilities of our model for a city
in the German federal state of Bavaria, where it is already
used to assist stakeholders and policy makers.

Future work includes the investigation of different sce-
narios and an iterative application of the presented model-
ing approach. As more and more charging stations become
equipped with a back-end connection, the picture that can
be drawn from the collected data becomes more complete.
This data could also be used to evaluate how the share of
electric vehicles and the utilization of charging infrastruc-
ture will develop over time. This would allows us to derive
specific scenarios for different regions to develop more accu-
rate models for the observed charging behavior. The data
could also be used for backtesting to validate the proposed
approach.
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