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Abstract—The transition from classic combustion engine vehi-
cles to electric vehicles is a major step to reduce worldwide CO2

emissions. In order to correctly and efficiently investigate impacts
on the electric grid and the dimensioning of charging infrastruc-
ture, or to explore new technologies for a further increase of the
driving range, realistic simulation models are required. In this
paper, we present an accurate yet computationally inexpensive
battery and kinematic model to be used in microscopic traffic
simulation to help study the performance of thousands of elec-
tric vehicles. Our model also supports recuperation and range
extender modules while only relying on the vehicle’s speed and a
set of constant predefined parameters. It can therefore be easily
coupled with current sophisticated traffic simulators. We show
its applicability and correctness regarding the State of Charge
and power flows using comprehensive real-life experiments.
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I. INTRODUCTION

Due to the lack of direct CO2 emissions, Electric Vehicles
(EV) are not only believed to alleviate the global warming
phenomenon but also to considerably lessen the degree of
dependence on fossil fuels like petroleum and natural gasses.
The trend towards an increasing number of electrified vehicles
requires to take several issues into consideration: For example,
the limited battery capacities and the corresponding shortened
driving ranges, the development of the energy demand ac-
cording to the penetration rate, the layout of the charging
infrastructure, or the impacts on the electric grid in general.

Field Operational Tests (FOTs) are an adequate way to
study these problems and identify potential impacts regarding
the initiation of EVs into the market. Due to their cost and
time-intensive nature, these tests are often accompanied by
modeling and simulation efforts that can be used to validate
results from FOTs and investigate further scenarios that could
not be covered by real life experiments. This way, different
penetration rates or the placement of charging infrastructure
can be investigated in a cost-efficient manner.

The quality and meaningfulness of simulation results highly
depends on the deployed simulation models. In the case of
EVs the major challenges are given, on the one hand by the mi-
crosimulation of traffic and, on the other hand by the modeling
of a vehicle’s battery. Since state-of-the-art traffic simulators
(cf. [1], [2]) are quite sophisticated, a simplified and validated
battery model would allow to efficiently simulate thousands of
EVs and, consequently, contribute to performance evaluations
of electric vehicles. Besides, such a simulation model cannot
only be used to assist the planning of charging infrastructure

or vehicle fleets but also to explore the potentials of further
technologies like Inter-Vehicle Communication (IVC) systems.
For example to help analyzing the benefit of communicating
intelligent traffic lights [3].

In this article, we introduce a computationally inexpensive
battery model, which is suited for microscopic traffic simula-
tion. The vehicle’s battery State of Charge (SOC) is derived
from a kinematic model based on speed and constant preset
parameters, only. In addition to that, our model provides the
possibility to include a range extender and recuperation module.
We validate the model’s behavior using real life experiments
and show that it produces accurate results.

The remainder of this article is organized as follows: Sec-
tion II provides an overview of related work. In Section III,
we introduce our battery model including the SOC calculation,
the kinematic model, and the recuperation and range extender
model. In Section IV we present the validation of our
model using two different real-life driving scenarios (urban
and freeway). Section V concludes our work and indicates
future steps.

II. RELATED WORK

The most important and commonly final parameter in many
battery models is the State of Charge (SOC) which reflects
the charging level of the battery. Different calculation models
with varying degrees of accuracy were proposed. Watrin et
al. [4] gave an overview about the literature and clustered the
approaches into three groups.

The first group includes direct measurement methods where
some parameters of the battery are measured to calculate the
SOC. One example is the voltage measurement method with
voltage as input for the estimation function. However, since
we want to calculate the SOC from traffic simulation—where
the exact battery voltage is not included—this method does not
fit our requirements.

The second cluster includes indirect or book-keeping meth-
ods. Approaches of this kind count the charging and dis-
charging current and rely on constant battery parameters (e.g.
Coulomb Counting Method). The SOC is determined by
integrating over the counted current (cf. Section III-B) These
approaches are widely used for battery models in traffic simu-
lation.

In the third cluster, hybrid or adaptive approaches combin-
ing direct and indirect methods are included, e.g. Artificial
Neural Networks.



Tielert et al. [5] used a modified passenger car and heavy
duty emission model (PHEM) to study the impact on the energy
consumption of cars considering communicating traffic lights
and vehicles. The SOC calculation is based upon an electric
circuit model and the battery characteristics are described by
analytical functions. Unfortunately, these functions are not
comprehensively described within the article. Furthermore, the
validation reflects the New European Driving Cycle (NEDC)
only and does not include a comparison with real world data.

Maia et al. [6] presented a model based on the mechanical
and electrical traction. While most subsystems of the vehicle—
c.f. auxiliary consumers—were abstracted, the mechanical
traction is derived from several forces, e.g. the force induced
by rolling resistance. Having combined this model with
the traffic simulator SUMO (Simulation of Urban Mobility)
allowed to conduct energy consumption studies. However, this
article does not cover an accurate recuperation model and the
authors did not consider a range extender module. Besides, the
model was not evaluated with real reference data.

Various battery models were proposed using electrochemi-
cal [7], mathematical [8], or electrical [9] modeling. Focusing
on studies of battery behavior and electrical efficiency these
models provide a high level of accuracy due to a lower ab-
straction level and many input parameters. Considering traffic
simulations and the effects of Inter Vehicular Communication
(IVC) on the power consumption, such an accuracy level is not
necessary and too expensive to be combined with simulation
tools like SUMO.

In the next section, we present our lightweight battery
model where speed and, if enabled, the recuperation stage are
the only dynamic parameters.

III. BATTERY MODEL

To allow our battery and kinematic model to work with
today’s well established microscopic traffic simulators [1],
[2], we focused on a simple and computationally inexpensive
design that uses as few parameters as possible.

A. Preliminaries

In this work we do not consider battery charge cycles
since microscopic traffic simulations usually cover a simulated
time span of some minutes or hours, only. We believe that
battery aging does not play an important role in such short
time periods, and therefore can be neglected. Aged batteries
could be simulated by adapting the relevant parameters [10],
e.g. by reducing the maximum capacity.

Furthermore, although auxiliary systems such as air condi-
tioning or headlights consume energy we did not model them
in detail. For the sake of simplicity and computational speed
we approximate their impact on the SOC using constant values.

Moreover, we neglect temperature effects considering the
charge and discharge process and assume a constant temper-
ature. We acknowledge that temperature dependence is an
important feature of lithium ion batteries, however, we lack the
required data to fully validate a temperature dependent battery
model. This will be the scope of future work.

B. State of Charge calculation

The outcome of a battery model, among others, is the State
of Charge which is usually measured in percent—100 % repre-
sents a fully loaded and 0 % a fully discharged battery. In the
state of the art, the SOC can be calculated in several ways (cf.
Section II). We chose the Coulomb counting method, which
is a book-keeping method, where the charging or discharging
current is measured to estimate the SOC. Equation 1 shows
the general computation, where IBat(t) is the battery current
flow and Qn the nominal capacity of the battery in Ampere
Seconds [As].

SOC(tn) :=

tn∫
t0

IBat(t)

Qn(t)
dt (1)

To be able to calculate the SOC in the context of a discrete
event simulator, we need to transform Equation 1 to account
for the fixed time step length ∆t and n := tn−t0

∆t

SOC(tn) :=

n∑
i=0

IBat(ti)

Qn(ti)
∆t. (2)

The current State of Charge SOC(tn) can be calculated as
using the last level SOC(tn−1) and the observed current
flow IBat(tn)

Qn(tn)
∆t.

Since IBat(t) =
PBat(t)
U(t) and Qn(t) =

QBat
U(t) , where QBat is a

given battery capacity in kilowatt hours [kWh =̂ VAs], we can
eliminate the voltage and get a voltage-free equation that only
depends on the changing power flow within one fixed period
∆t and the fixed battery capacity

SOC(tn) := SOC(tn−1)− PBat(tn) ·
∆t

QBat
(3)

By doing so we only need to calculate the power flow PBat(t)
to derive the SOC of the battery. For this, we have developed
a kinematic model, which takes only one non-constant input
parameter into account: the vehicle’s speed.

C. Kinematic model

In each time step ti of the traffic simulation, the power
flow PBat(ti) is computed as a function of the vehicle’s speed
v(ti), its acceleration a(ti), and the angular speed of the wheels
wR(ti).

v, a, wR

E-Motor

wM , M, n

BatteryWheel

IBat , SOC

-PBat
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Figure 1. State of Charge (SOC) in relation to the vehicle speed

Given only v, the acceleration a can be computed as the
rate of change of the speed

a(ti) =
v(ti)− v(ti−1)

∆t
. (4)



Furthermore, the angular speed of the wheels wR(ti) can be
derived using wR(ti) =

v(ti)
r , where r is the radius of the car’s

wheel.

Consequently, the engine’s angular speed wM is given by
wM := R · wR, where R is the gear transmission ratio. The
angular speed is used to calculate the rotational speed n, used
in Equation 7.

All involved parameters are either constants, given by the
constructor of the vehicle, or can be derived from the vehicle’s
speed. This allows us to calculate the power flow between
battery and engine as follows

−PBat := PAux + PEng, (5)

where PAux is the accumulated power of all auxiliary systems
and

PEng :=
PAcc + PHC + PRoll + PAir

ηM
, (6)

where ηM is the engine’s constant efficiency factor, PAcc
the power to accelerate the car, ηM is the engine’s constant
efficiency factor, PAcc the power to accelerate the car, PHC the
hill climbing power, PAir the power needed to overcome the
air resistance, and PRoll the power required to overcome the
roll resistance.

The following equation yields the power which is required
to accelerate the car

PAcc = 2 · π · n ·M, (7)

where n is the rotational speed of the engine and M is the
torque. For each time step ti the torque is calculated as follows

M(ti) =
a(ti)

amax
·Mmax, (8)

where amax is the vehicle’s maximum possible acceleration.
The energy consumption for acceleration and constant drive
varies with the slope of the street.

The hill climbing power is given by

PHC = m · g · sinα · v, (9)

where m is the vehicle’s mass, g is the gravitational accelera-
tion, α is the elevation of the street, and v the vehicle’s speed.
If the car is driving on a plain street, the value of PHC equals
zero.

Furthermore, the engine consumes energy to overcome the
air and the roll resistance of the vehicle. The power induced
by rolling resistance is given by

PRoll = cr ·m · g · v, (10)

where cr is the rolling resistance coefficient and v the car’s
speed. The power to overcome the air resistance is calculated
with

PAir =
1

2
· cd ·A · ρ · v3, (11)

where cd is the drag coefficient, A is the car’s cross sectional
area, ρ is the air density for the temperature of 20 ◦C, and v
is the vehicle’s speed.

If the car drives with constant speed or decelerates, PAcc
becomes zero and the battery discharging process only depends
on PRoll, PAir and PHC.
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Figure 2. Speed-dependent recuperation moment MRecu for each recupera-
tion stage

Table I. LOAD LEVELS OF RANGE EXTENDER

Load Level Generated power [kW] Speed [km/h]

1 6 0-15

2 9 15-35

3 12 35-60

4 15 >60

D. Recuperation and range extender

So far, we derived the power consumption of the engine
from our kinematic model. However, today’s EVs often
incorporate technology to increase the driving range by feeding
back power to the battery. The most prominent among such
systems are the recuperation module and the range extender.

Recuperation is a method to recover energy by converting
kinetic to electric energy, during breaking and coasting. The
amount of recovered energy depends on the used recuperation
stage: if a higher stage is chosen, the car decelerates faster dur-
ing coasting but is able to recover more energy. Accordingly,
if a lower stage is chosen, the car coasts longer but recovers
less energy. The stage of recuperation is usually chosen by the
driver, however, some of the newer vehicles support the driver
by automatically choosing the most efficient stage.

Our model includes five recuperation stages and a no-
recuperation stage, as it can be found in a typical today’s mid-
size car. The recovered energy is calculated based on the en-
gine’s rotational speed n and the recuperation moment MRecu

PRecu = 2 · π · n ·MRecu(v) (12)

The speed-dependent recuperation moment MRecu(v) is calcu-
lated based on the determined recuperation stage. Figure 2
shows the recuperation moment curves according to the speed
of the car (as specified by the manufacturer).

Usually, a range extender is a small combustion engine to
generate power for the battery if the SOC is too low to reach
a given destination.

The range extender delivers a constant power depending
on the corresponding load level. In our model, we assume a
Wankel engine with four load levels as shown in Table I. These



0 50 100 150 200 250 300 350 400 450
62

63

64

65

66

S
O

C
 [

%
]

t [s]

(c) State of Charge

Model

Reference

0 50 100 150 200 250 300 350 400 450
40

20

0

20

40

P
B

at
[k

W
]

(b) Battery power

Model

Reference

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40
v

 [
m

/s
]

(a) Speed profile

Figure 3. Validation results of the urban test drive
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Figure 4. Validation results of freeway test drive

levels are automatically set with respect to pre-defined speed
thresholds.

The resulting battery power flow PBat is then calculated as
follows

PBat := −PAux − PEng + PRecu + PRE, (13)

where PEng as calculated in Equation 5, PAux is the power
consumed by auxiliary systems, PRecu is the recovered recu-
peration power, and PRE is the power generated by the range
extender. If the engine does not consume power, e.g. while
freewheeling, the SOC of the battery increases if recuperation
or range extender are in use and produce more power than the
auxiliary systems consume.

Table II shows all relevant car-independent and car-specific
parameters used in our model.

IV. VALIDATION

For the validation of our model, we implemented it in
MATLAB and conducted real-life test drives using an AUDI
A1 e-tron as a reference car. We recorded all necessary
variables and used the car’s speed as input for our model to
compare the computed SOC against the recorded one.

A. Urban test drive

In a first experiment, we took the test vehicle to a German
city and conducted a 7min test drive. The speed profile of
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Figure 5. Validation results of range extender module

Table II. PARAMETERS AND THEIR TYPICAL VALUES USED IN THE
BATTERY AND KINEMATIC MODEL

Parameter Common symbol Typical Value

Maximum power Pmax 75 kW

Maximum torque Mmax 300 Nm

Maximum rotational speed (engine) nmax 6490 rot/min

Maximum acceleration amax 2.7 m/s2

Car’s empty weight m 1400 kg

Battery capacity CN 12 kWh

Car’s cross sectional area A 2m2

Drag coefficient cd 0.32

Rolling resistance coefficient cr 0.015

Air density at 20 ◦C ρ 1.2041 kg/m3

Radius of the car’s wheels r 0.302 m

Engine’s efficiency factor ηM 0.9

this experiment is shown in Figure 3a. We observe the typical
inner-city start-and-stop behavior with short periods of non-
driving during red traffic light phases followed by acceleration
to 14 m/s (50 km/h), which is the inner-city speed limit in
Germany.

Figure 3b shows the comparison of the recorded test drive
power flow and the power flow of the battery computed by
our model. A positive level means, that power is consumed,
while a negative level indicates that power was fed back into
the battery. Hence, whenever the vehicle decelerates there
is a noticeable power inflow generated by the recuperation
module. Our model and the real life data are quite similar
and in agreement for almost the entire test drive. The small
deviations are mainly caused by the vehicle going down- or
uphill and the fact that we did not have exact elevation data
for the test drive.

In Figure 3(c) we compare the resulting SOC of the
vehicle’s battery. Again, the model and the recorded reference
data are almost identical (note the small range of the y-axis),
showing the correctness of our approach. In this test drive, the
SOC actually increases over time as the range extender was

continuously running and recharging the battery. The steps in
the recorded data are caused by limitations of our measurement
hardware.

The results show that our model is able to model the SOC
of an electric vehicle in an urban environment very well.

B. Freeway test drive

The second experiment was conducted on a German
freeway, where we recorded a maximum speed of 35 m/s
(125 km/h). The results are summarized in Figure 4.

The speed profile (Figure 4a) shows an uninterrupted drive
and higher overall speed levels than in the urban experiment
with fewer acceleration/deceleration cycles. Figure 4b shows
that our model is able to accurately reproduce the measured
battery power levels. Please note that effects such as trucks
in front of the test car reducing the air resistance and hence
the required power are not considered in our model and can
therefore lead to small deviations.

When comparing the SOC obtained by our model with
the real life measurements (Figure 4c), we observe that the
overall accuracy of our model is quite good. Driving at
high speed at the beginning of our test drive drained the
battery more than the range extender could charge it. When
we arrived in a more congested section of the freeway the
range extender could recharge the battery due to the lower
speed. Our model slightly underestimated the SOC in this
part of the experiment, however, the gap between model and
measurements disappeared only a few seconds later, showing
the applicability of the presented battery model in both urban
and extra-urban scenarios.

C. Range extender validation

To validate the correctness, we compared the current gen-
erated by the range extender module in our freeway test drive
with the values obtain from the simulation model. The current
flow of the battery and the engine are shown in Figure 5a.



For the sake of simplicity we inverted the engine curve in
this graph because a positive incoming flow here corresponds
to a negative one in the battery. The difference between the
dashed and the solid line is the current flow generated by the
range extender. As the load level is set based on the current
speed, the lines are further apart when the vehicle is driving
faster due to the then higher amount of power generated by
the range extender.

Figure 5b shows that our model is able to reproduce this
current flow well and that it can therefore be used to accurately
capture the effects of range extender modules on the driving
range of EVs. The small deviations in the plot are caused
by measurement errors and smaller side-effects that cannot be
considered to keep the model computational inexpensive. Our
overall results show that the level of abstraction is sufficient to
simulate the realistic behavior of a today’s lithium-ion battery
in an electric vehicle while still maintaining low complexity.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a lightweight and computation-
ally inexpensive battery model. Using a kinematic model, we
showed how to calculate the SOC based only on the vehicle’s
speed and fixed predefined parameters. Additionally, our model
is able to include recuperation and range extender modules.
We validated the model by comparing its output with data
collected from comprehensive test drives. The results show
that our model could reproduce the car’s power consumption
and battery level with high accuracy and therefore allows for
realistic representation of electrical vehicles in microscopic
traffic simulation.

Future work will concentrate on the simulation of realistic
city-wide traffic based on empiric data to evaluate the impact
of the substitution of common combustion engine vehicles
with their electric counterparts. Based on these steps, we will
investigate possible benefits of Inter-Vehicular Communication
(IVC) on battery management. Furthermore, we will focus
on extending our model to also account for the influence of
temperature on the battery parameters.
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